
Partition Algorithms

Ralph Freese

March 4, 1997

These are algorithms for partitions on the set {0,1, . . . , n− 1}. We rep-
resent partitions abstractly as forests, i.e., a collection of trees, one tree for
each block of the partition. We only need the parent information about the
tree so we represent the partition as a vector V with V[i] the parent of i
unless i has no parent (and so is a root), in which case V[i] is negative the
size of the block with i. In this scheme the least partition would be rep-
resented by the vector 〈−1,−1, . . . ,−1〉 and the greatest partition could be
represented in many ways including the vector 〈−n,0, . . . ,0〉. [2] contains
an elementary discussion of this type of representation of partitions.

We say that a vector representing a partition is in normal form if the
root of each block is the least element of that block and the parent of each
nonroot is its root. This form is unique, i.e., two vectors represent the same
partition if and only if they have the same normal form. The examples
above are in normal form. Algorithm 1 gives a simple recursive procedure
for finding the root of any element i. Note that i and j are in the same block
if and only if root(i) = root(j).

1 procedure root(i,V)
2 j ← V[i]
3 if j < 0 then return(i)
4 else return(root(j)) endif
5 endprocedure

Algorithm 1: Finding the root

The running time for root is proportional to the depth of i in its tree,
so we would like to keep the depth of the forest small. Algorithm 2 finds
the root and at the same time modifies V so that the parent of i is its root
without increasing the order of magnitude of the running time.

In many applications you want to build up a partition by starting with
the least partition and repeatedly join blocks together. Algorithm 3 does
this.

Note that Algorithm 3 always joins the smaller block onto the larger
block. This assures us that the resulting partition will have depth at most
log2n as the next theorem shows.

1



1 procedure root(i,V)
2 j ← V[i]
3 if j < 0 then return(i)
4 else V[i]← root(j); return(V[i]) endif
5 endprocedure

Algorithm 2: Finding the root and compressing V

1 procedure join-blocks(i, j,V)
2 ri ← root(i,V); rj ← root(j,V);
3 if ri ≠ rj then
4 si ← −V[ri]; sj ← −V[rj]
5 if si < sj then
6 V[i]← rj ; V[j] ← −(si + sj)
7 else
8 V[j] ← ri; V[i]← −(si + sj)
9 endif

10 endif
11 return(V)
12 endprocedure

Algorithm 3: Join two blocks together

Theorem 1 If Algorithm 3 is applied any number of times starting with the
least partition, the depth of the resulting partition will never exceed log2n.

Proof: Let i be a fixed node. Note an application of join-blocks increases the
depth of i by at most 1 and, if this occurs, the size of the block with i is at
least doubled. Thus the depth of i can be increased (by 1) from its original
value of 0 at most log2n times.

This result shows that the time required to run the join-blocks–procedure
m times is O(m log2n). In [1] Tarjan has shown that, if we use the root
operation given in Algorithm 2, the time required is O(mα(m)), where α
is the pseudo-inverse of the Ackermann function. The Ackermann function
is extremely fast growing and so α grows very slowly; in fact, α(m) ≤ 4
unlessm is at least

222··
·2

with 65536 2’s.
By Theorem 1 we may assume that all our (representations of) partitions

have depth at most log2n. The rank of a partition (in the partition lattice
Πn of ann element set) isn−k, where k is the number of blocks. The join of
two partitions U and V can be found by executing join-blocks(i,U[i],V) for
each i which is not a root of U. This can be done in time O(rank(U) log2n)

2



and so in time O(n log2n). (Actually, such an algorithm should make a
copy of V so the original V is not modified.)

It is relatively easy to write O(n log2n) time procedures for putting V
into normal form and for testing if V ≤ U inΠn. Finding anO(n log2n) time
algorithm for the meet of two partitions is a little more difficult. Algorithm 4
does this. In this algorithm, HT is a hash table. (In place of a hash table, one
could use a balanced tree or some other data structure described in texts
on algorithms and data structures.)

1 procedure meet(V1,V2)
2 n← size(V1)
3 for i ∈ Zwith 0 ≤ i < n do
4 r1 ← root(i,V1); r2 ← root(i,V2)
5 if HT[r1, r2] is defined then
6 r ← HT[r1, r2]
7 V[r]← V[r]− 1
8 V[i]← r
9 else

10 HT[r1, r2]← i
11 V[i]← −1
12 endif
13 endfor
14 return(V)
15 endprocedure

Algorithm 4: Meet of two partitions

References

[1] R. E. Tarjan, Efficiency of a good but not linear set union algorithm, J.
Assoc. Comput. Mach. 22 (1975), 215–225.

[2] M. A. Weiss, Data Structures and Algorithm Analysis, Benjamin Cum-
mings, Redwood City, California, 1994, Second Edition.

3


