NOTES ON DIRECT DECOMPOSITIONS

RALPH FREESE

Lemma 1. Let \mathbf{L} be a modular lattice of equivalence relations, and let α, α^{\prime}, and $\beta \in L$. If α and α^{\prime} permute and $\alpha \wedge \alpha^{\prime} \leq \beta \leq \alpha^{\prime}$ then α and β permute.

Proof. Let $a \alpha b \beta c$. Then $\langle a, c\rangle \in \alpha \vee \beta \leq \alpha \vee \alpha^{\prime}$. Hence there is a b^{\prime} such that the relations of Figure 1 hold.

Figure 1.
Hence $\left\langle a, b^{\prime}\right\rangle \in \alpha^{\prime} \wedge(\alpha \vee \beta)=\left(\alpha \wedge \alpha^{\prime}\right) \vee \beta=\beta$, showing that $\alpha \circ \beta=$ $\beta \circ \alpha$.

Lemma 2. Let \mathbf{L} be a lattice of equivalence relations, and let α, α^{\prime}, and $\beta \in L$. If α and α^{\prime} permute and $\alpha \leq \beta \leq \alpha \vee \alpha^{\prime}$ then α^{\prime} and β permute.

Proof. Easy.
Theorem 3. Let \mathbf{L} be a finite dimensional modular lattice of equivalence relations with elements $\alpha, \alpha^{\prime}, \beta$, and β^{\prime} satisfying

$$
\begin{align*}
& \alpha \vee \alpha^{\prime}=\beta \vee \beta^{\prime}=\alpha \vee \beta^{\prime}=\alpha^{\prime} \vee \beta=1 \\
& \alpha \wedge \alpha^{\prime}=\beta \wedge \beta^{\prime}=\alpha \wedge \beta^{\prime}=\alpha^{\prime} \wedge \beta=0 . \tag{1}
\end{align*}
$$

Moreover, assume that

$$
\begin{equation*}
\alpha \circ \alpha^{\prime}=\alpha^{\prime} \circ \alpha \quad \beta \circ \beta^{\prime}=\beta^{\prime} \circ \beta . \tag{2}
\end{equation*}
$$

If there is no homomorphism of the sublattice of \mathbf{L} generated by $\left\{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}\right\}$ onto \mathbf{M}_{4}, then α and β^{\prime} permute.

Date: October 9, 2001.
This research was partially supported by NSF grant no. DMS-9500752.

Note by this comment, it is clear that a somewhat stronger theorem for algebras is true. Namely, we need only assume that the sublattice of Con \mathbf{L} generated by $\alpha, \alpha^{\prime}, \beta$,

Proof. Clearly, in order to prove this theorem, we may assume that \mathbf{L} is generated by $\left\{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}\right\}$. By a dimension argument, if every pair of generators met to 0 , then every pair would join to 1 . This would make $\mathbf{L} \cong \mathbf{M}_{4}$, contrary to the hypothesis. Thus, without loss of generality, $\alpha^{\prime} \wedge \beta^{\prime}>0$. Let

$$
\alpha_{1}=\alpha \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right) \quad \beta_{1}=\beta \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right) .
$$

It is easy to check that $\alpha_{1}, \beta_{1}, \alpha^{\prime}$, and β^{\prime} still satisfy (1) with $\alpha^{\prime} \wedge \beta^{\prime}$ in place of 0 . By Lemma $2, \alpha_{1}$ and α^{\prime} permute as do β_{1} and β^{\prime}. Let \mathbf{L}_{1} be the sublattice generated by $\alpha_{1}, \beta_{1}, \alpha^{\prime}$, and β^{\prime}. We claim that \mathbf{M}_{4} is not a homomorphic image of \mathbf{L}_{1}.

To see this consider the homomorphism $f: \mathbf{F L}\left(x, y, x^{\prime}, y^{\prime}\right) \rightarrow \mathbf{M}_{4}$. Let $f(x)=a, f(y)=b, f\left(x^{\prime}\right)=a^{\prime}$, and $f\left(y^{\prime}\right)=b^{\prime}$, where a, b, a^{\prime}, and b^{\prime} are the atoms of \mathbf{M}_{4}. Define maps α_{n} and $\beta_{n}:\left\{a, b, a^{\prime}, b^{\prime}\right\} \mapsto \mathbf{F L}\left(x, y, x^{\prime}, y^{\prime}\right)$ for $n \geq 0$ by $\beta_{0}(a)=x$ and

$$
\begin{equation*}
\beta_{n+1}(a)=x \wedge\left[\beta_{n}(b) \vee \beta_{n}\left(a^{\prime}\right)\right] \wedge\left[\beta_{n}(b) \vee \beta_{n}\left(b^{\prime}\right)\right] \wedge\left[\beta_{n}\left(a^{\prime}\right) \vee \beta_{n}\left(b^{\prime}\right)\right] . \tag{3}
\end{equation*}
$$

(Do not confuse the lower maps, denoted β_{n} with our specific elements β and β_{1}.) The definition of β_{n} on b, a^{\prime}, and b^{\prime} is symmetric. α_{n} is defined dually. By McKenzie [1], $f(z) \geq a$ if and only if $z \geq \beta_{n}(a)$ for some n. From this we get the following lemma.

Lemma 4. If \mathbf{M} is a lattice generated by x, y, x^{\prime}, and y^{\prime} then the map $g(x)=a, g(y)=b, g\left(x^{\prime}\right)=a^{\prime}$, and $g\left(y^{\prime}\right)=b^{\prime}$ can be extended to a homomorphism of \mathbf{M} onto \mathbf{M}_{4} if and only if the following hold in \mathbf{M}.

$$
\begin{equation*}
\beta_{n}(a) \not \leq \alpha_{n}(b) \quad \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

We wish to apply this lemma to \mathbf{L}. For each $n, \beta_{n}(a)$ is a term in the language of lattices. We let $\beta_{n}^{\mathbf{L}}(a)$ be the interpretation of this term in \mathbf{L} under the subsitiution $x=\alpha, y=\beta, x^{\prime}=\alpha^{\prime}$, and $y^{\prime}=\beta^{\prime}$. Moreover, we let $\beta_{n}^{\mathbf{L}_{1}}(a)$ be the interpretation of this term in \mathbf{L}_{1} under the subsitiution $x=\alpha_{1}, y=\beta_{1}, x^{\prime}=\alpha^{\prime}$, and $y^{\prime}=\beta^{\prime}$.

Since our \mathbf{L} does not have \mathbf{M}_{4} as a homomorphic image, there is an n such that the relation

$$
\beta_{n}^{\mathbf{L}}(a) \leq \alpha_{n}^{\mathbf{L}}(b)
$$

holds in \mathbf{L}. Using (1) and some modular calculations, one can show that

$$
\begin{equation*}
\beta_{n}^{\mathbf{L}_{1}}(a)=\beta_{n}^{\mathbf{L}}(a) \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right) . \tag{5}
\end{equation*}
$$

(Sketch: First show that if $\beta_{n+1}(a)$ is defined inductively as

$$
\beta_{n+1}(a)=x \wedge\left[\beta_{n}\left(a^{\prime}\right) \vee \beta_{n}\left(b^{\prime}\right)\right]
$$

instead of as it was defined (3) (and similarly for $\beta_{n}\left(a^{\prime}\right)$, etc.), the interpretation in any modular lattice satisfying (1) is the same. Then note the following which holds in all lattices,

$$
\beta_{n+1}(a)=\beta_{n}(a) \wedge\left[\beta_{n}\left(a^{\prime}\right) \vee \beta_{n}\left(b^{\prime}\right)\right]
$$

Now use the modular law to specifically get a "one sided" form and use this to derive (5).) Hence

$$
\begin{aligned}
\beta_{n}^{\mathbf{L}_{1}}(a) & =\beta_{n}^{\mathbf{L}^{\mathbf{L}}}(a) \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right) \\
& \leq \alpha_{n}^{\mathbf{L}^{\prime}}(b) \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right) \\
& \leq \alpha_{n}^{\mathbf{L}_{1}}(b) .
\end{aligned}
$$

Thus by Lemma $4, \mathbf{L}_{1}$ does not have \mathbf{M}_{4} as a homomorphic image. Thus, by induction on the length of the lattice, we conclude that α_{1} and β^{\prime} permute. Now using this and an application of Lemma 1 we calculate

$$
\begin{aligned}
\alpha \vee \beta^{\prime} & =\alpha_{1} \vee \beta^{\prime} \\
& =\alpha_{1} \circ \beta \\
& =\left[\alpha \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right)\right] \circ \beta^{\prime} \\
& =\left[\alpha \circ\left(\alpha^{\prime} \wedge \beta^{\prime}\right)\right] \circ \beta^{\prime} \\
& =\alpha \circ \beta^{\prime}
\end{aligned}
$$

completing the proof.
The theorem does have content. There are infinitely many 4-generated, finite dimensional, subdirectly irreducible modular lattices which satisfy (1). In fact there is one for each possible length. The one of length 4 is diagrammed in Figure 2.

Figure 2.

References

[1] R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.

University of Hawair, Honolulu, HI 96822
E-mail address: ralph@math.hawaii.edu

