NOTES ON DIRECT DECOMPOSITIONS

RALPH FREESE

Lemma 1. Let **L** be a modular lattice of equivalence relations, and let α , α' , and $\beta \in L$. If α and α' permute and $\alpha \wedge \alpha' \leq \beta \leq \alpha'$ then α and β permute.

Proof. Let $a \alpha b \beta c$. Then $\langle a, c \rangle \in \alpha \vee \beta \leq \alpha \vee \alpha'$. Hence there is a b' such that the relations of Figure 1 hold.

FIGURE 1.

Hence
$$\langle a, b' \rangle \in \alpha' \land (\alpha \lor \beta) = (\alpha \land \alpha') \lor \beta = \beta$$
, showing that $\alpha \circ \beta = \beta \circ \alpha$.

Lemma 2. Let **L** be a lattice of equivalence relations, and let α , α' , and $\beta \in L$. If α and α' permute and $\alpha \leq \beta \leq \alpha \vee \alpha'$ then α' and β permute.

Proof. Easy.
$$\Box$$

Theorem 3. Let **L** be a finite dimensional modular lattice of equivalence relations with elements α , α' , β , and β' satisfying

(1)
$$\alpha \vee \alpha' = \beta \vee \beta' = \alpha \vee \beta' = \alpha' \vee \beta = 1 \\ \alpha \wedge \alpha' = \beta \wedge \beta' = \alpha \wedge \beta' = \alpha' \wedge \beta = 0.$$

Moreover, assume that

(2)
$$\alpha \circ \alpha' = \alpha' \circ \alpha \qquad \beta \circ \beta' = \beta' \circ \beta.$$

If there is no homomorphism of the sublattice of **L** generated by $\{\alpha, \beta, \alpha', \beta'\}$ onto \mathbf{M}_4 , then α and β' permute.

Date: October 9, 2001.

This research was partially supported by NSF grant no. DMS-9500752.

Note by this comment, it is clear that a somewhat stronger theorem for algebras is true. Namely, we need only assume that the sublattice of **Con L** generated by α , α' , β ,

Proof. Clearly, in order to prove this theorem, we may assume that \mathbf{L} is generated by $\{\alpha, \beta, \alpha', \beta'\}$. By a dimension argument, if every pair of generators met to 0, then every pair would join to 1. This would make $\mathbf{L} \cong \mathbf{M}_4$, contrary to the hypothesis. Thus, without loss of generality, $\alpha' \wedge \beta' > 0$. Let

$$\alpha_1 = \alpha \vee (\alpha' \wedge \beta')$$
 $\beta_1 = \beta \vee (\alpha' \wedge \beta').$

It is easy to check that α_1 , β_1 , α' , and β' still satisfy (1) with $\alpha' \wedge \beta'$ in place of 0. By Lemma 2, α_1 and α' permute as do β_1 and β' . Let \mathbf{L}_1 be the sublattice generated by α_1 , β_1 , α' , and β' . We claim that \mathbf{M}_4 is not a homomorphic image of \mathbf{L}_1 .

To see this consider the homomorphism $f: \mathbf{FL}(x, y, x', y') \to \mathbf{M}_4$. Let f(x) = a, f(y) = b, f(x') = a', and f(y') = b', where a, b, a', and b' are the atoms of \mathbf{M}_4 . Define maps α_n and $\beta_n : \{a, b, a', b'\} \to \mathbf{FL}(x, y, x', y')$ for $n \geq 0$ by $\beta_0(a) = x$ and

$$(3) \quad \beta_{n+1}(a) = x \wedge [\beta_n(b) \vee \beta_n(a')] \wedge [\beta_n(b) \vee \beta_n(b')] \wedge [\beta_n(a') \vee \beta_n(b')].$$

(Do not confuse the lower maps, denoted β_n with our specific elements β and β_1 .) The definition of β_n on b, a', and b' is symmetric. α_n is defined dually. By McKenzie [1], $f(z) \geq a$ if and only if $z \geq \beta_n(a)$ for some n. From this we get the following lemma.

Lemma 4. If **M** is a lattice generated by x, y, x', and y' then the map g(x) = a, g(y) = b, g(x') = a', and g(y') = b' can be extended to a homomorphism of **M** onto \mathbf{M}_4 if and only if the following hold in \mathbf{M} .

(4)
$$\beta_n(a) \not\leq \alpha_n(b)$$
 for all $n \geq 0$

We wish to apply this lemma to **L**. For each n, $\beta_n(a)$ is a term in the language of lattices. We let $\beta_n^{\mathbf{L}}(a)$ be the interpretation of this term in **L** under the substitution $x = \alpha$, $y = \beta$, $x' = \alpha'$, and $y' = \beta'$. Moreover, we let $\beta_n^{\mathbf{L}_1}(a)$ be the interpretation of this term in \mathbf{L}_1 under the substitution $x = \alpha_1$, $y = \beta_1$, $x' = \alpha'$, and $y' = \beta'$.

Since our **L** does not have \mathbf{M}_4 as a homomorphic image, there is an n such that the relation

$$\beta_n^{\mathbf{L}}(a) \le \alpha_n^{\mathbf{L}}(b)$$

holds in L. Using (1) and some modular calculations, one can show that

(5)
$$\beta_n^{\mathbf{L}_1}(a) = \beta_n^{\mathbf{L}}(a) \vee (\alpha' \wedge \beta').$$

(Sketch: First show that if $\beta_{n+1}(a)$ is defined inductively as

$$\beta_{n+1}(a) = x \wedge [\beta_n(a') \vee \beta_n(b')]$$

instead of as it was defined (3) (and similarly for $\beta_n(a')$, etc.), the interpretation in any modular lattice satisfying (1) is the same. Then note the following which holds in all lattices,

$$\beta_{n+1}(a) = \beta_n(a) \wedge [\beta_n(a') \vee \beta_n(b')]$$

Now use the modular law to specifically get a "one sided" form and use this to derive (5).) Hence

$$\beta_n^{\mathbf{L}_1}(a) = \beta_n^{\mathbf{L}}(a) \vee (\alpha' \wedge \beta')$$

$$\leq \alpha_n^{\mathbf{L}}(b) \vee (\alpha' \wedge \beta')$$

$$\leq \alpha_n^{\mathbf{L}_1}(b).$$

Thus by Lemma 4, \mathbf{L}_1 does not have \mathbf{M}_4 as a homomorphic image. Thus, by induction on the length of the lattice, we conclude that α_1 and β' permute. Now using this and an application of Lemma 1 we calculate

$$\alpha \vee \beta' = \alpha_1 \vee \beta'$$

$$= \alpha_1 \circ \beta$$

$$= [\alpha \vee (\alpha' \wedge \beta')] \circ \beta'$$

$$= [\alpha \circ (\alpha' \wedge \beta')] \circ \beta'$$

$$= \alpha \circ \beta'$$

completing the proof.

The theorem does have content. There are infinitely many 4-generated, finite dimensional, subdirectly irreducible modular lattices which satisfy (1). In fact there is one for each possible length. The one of length 4 is diagrammed in Figure 2.

Figure 2.

References

[1] R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43.

UNIVERSITY OF HAWAII, HONOLULU, HI 96822 E-mail address: ralph@math.hawaii.edu