ON EXTENDING LEMMA 4

Ralph Freese

In §5.2 and §5.3 of [4] the authors present two famous direct decomposition theorems. The Birkhoff-Ore Theorem states that an algebra **A** with permuting congruences and a one-element subalgebra has unique factorization as a direct product of directly indecomposable algebras provided that **Con A** is finite dimensional. Jónsson was able to prove a similar theorem, only assuming that **Con A** is modular, provided **A** is finite. (Without the assumption of a one-element subalgebra, ones gets isotopic versions of both of these theorems, see [4].) A very clear proof, emphasizing the common aspects of these theorems, is given in [4]. The authors ask if these theorems have a common generalization: does an algebra with a finite dimensional modular congruence lattice have unique factorization? Lemma 4 of §5.2 of [4] shows exactly where the finiteness of **A** is used in Jónsson's result to prove certain congruences permute. The authors point out that if this lemma could be proved under the weaker assumption that **Con A** is a finite dimensional modular lattice then the desired generalization would be valid.

Lemma 4 concerns four congruences, α , α' , β , and β' , such that α and α' form a complementary permuting pair as do β and β' . Moreover,

$$\alpha \wedge \beta' = \alpha' \wedge \beta = 0.$$

The desired conclusion is that α and β' also permute. In [1] we have been able to prove this under the assumption that the sublattice of **Con A** generated by these four elements does not have \mathbf{M}_4 as a homomorphic image.

However in this note we construct an algebra which shows that the full generalization of Lemma 4 is not valid.

Preliminaries. Let G be a group and let S be a set of endomorphism of G. Assume that G has no S-invariant subgroups. We define a unary algebra

$$\mathbf{A} = \langle G \times G, f_{a,b,s} \rangle_{a,b \in G, s \in S}$$

where

$$f_{a,b,s}(x,y) = \langle as(x), s(y)b \rangle.$$

This research was partially supported by NSF grant no. DMS89-01756

Theorem 1 (Gumm [2], [3]). For the algebra **A** defined above, we have the following.

- (1) Both the projections kernels, η_0 and η_1 , are congruences on **A**.
- (2) If σ is an automorphism of G which respects, i.e. commutes with, every element of S, then

$$\overline{\sigma} = \{ \langle \langle a, b \rangle, \langle c, d \rangle \rangle : a\sigma(b) = c\sigma(d) \}$$

is a congruence on **A**. Moreover, every element of **Con A**, except $0_{\mathbf{A}}$, $1_{\mathbf{A}}$, η_0 , and η_1 , has this form.

- (3) Con $\mathbf{A} \cong \mathbf{M}_n$, where n is two more than the cardinality of the set of automorphisms of \mathbf{G} which respect S.
- (4) η_i permutes with every element of Con A, for i = 0, 1.

Proof. It is straightforward to verify that $\overline{\sigma}$ is a congruence and that if σ and τ are distinct, then $\overline{\sigma} \neq \overline{\tau}$. The proof of the second statement of (2) is given in Lemma 3.4 of [2], which Gumm credits to Wolk. The other parts of the theorem are either elementary or follow from (2). \square

The next lemma tells when $\overline{\sigma}$ and $\overline{\tau}$ permute.

Lemma 2. Let σ and τ be distinct automorphisms of G which respect S.

Theorem 'perm'

- (1) The congruences $\overline{\sigma}$ and $\overline{\tau}$ permute if and only if the map $x \mapsto \sigma(x)^{-1}\tau(x)$, from G to G, is onto.
- (2) The map $x \mapsto \sigma(x)^{-1}\tau(x)$ is always one-one.
- (3) If **G** is finite, then $\overline{\sigma}$ and $\overline{\tau}$ permute.
- (4) If **G** is abelian, then $\overline{\sigma}$ and $\overline{\tau}$ permute.

Proof. Since σ and τ are distinct, so are $\overline{\sigma}$ and $\overline{\tau}$. Thus $\overline{\sigma} \vee \overline{\tau} = 1$. Hence $\overline{\sigma}$ and $\overline{\tau}$ permute if and only if for all $a, b, c, d \in G$ there are $x, y \in G$ such that $\langle a, b \rangle \overline{\sigma} \langle x, y \rangle \overline{\tau} \langle c, d \rangle$. This holds if and only if

$$a\sigma(b) = x\sigma(y)$$
 $x\tau(y) = c\tau(d)$.

Eliminating x from these equations, we see that $\overline{\sigma}$ and $\overline{\tau}$ permute if and only if there is a y such that

$$\sigma(y)^{-1}\tau(y) = \sigma(b)^{-1}a^{-1}c\tau(d).$$

since the right side of the above equation can represent any element of G, (1) follows.

The second part follows from the fact that $\{x \in G : \sigma(x) = \tau(x)\}$ is an S-invariant subgroup of **G**. (3) follows from (2). When **G** is abelian, $\{\sigma(x)^{-1}\tau(x) : x \in G\}$ is also an S-invariant subgroup of **G**, and hence must be all of **G**. \square

The example. Let **H** be a simple, nonabelian group. Let **G** be the direct sum of infinitely many copies of **H** indexed by \mathbb{Z} , *i.e.*,

$$G = \{ f \in H^{\mathbb{Z}} : f(i) = 1 \text{ for all but finitely many } i \}.$$

Let σ be the shift automorphism of \mathbf{G} , *i.e.*, $(\sigma f)(i) = f(i-1)$. Let T be the set of automorphisms on \mathbf{G} arising from inner automorphisms of \mathbf{H} , *i.e.*, each $s \in T$ has the form $(sf)(i) = x^{-1}f(i)x$ for some $x \in H$ independent of i. Let $S = T \cup \sigma$.

Lemma 3. G has no nontrivial subgroups invariant under S.

Theorem 'lemma1'

Proof. We need to show that if $f \in G$ is not 1, then the S-subgroup of \mathbf{G} generated by f is \mathbf{G} . We prove this by induction on the size of the support of f. If the support of f is 1, say f(i) = 1 for all $i \neq 0$ but $f(0) \neq 1$, then using the inner automorphisms and the fact that \mathbf{H} is simple, we obtain elements whose 0^{th} coordinate is arbitrary and whose other coordinates are all 1. Using σ we can move this to any coordinate and by using multiplication we can generate an arbitrary element in G.

Now suppose that the support of f is at least 2. We may assume that the support of f lies in $\{0, 1, \ldots, n-1\}$ and that $f(0) \neq 1$. Let k be the next nonidentity coordinate. Again since \mathbf{H} is simple, we can generate g from f such that g(0) is arbitrary. In particular, we may assume that g(0) does not commute with f(k). Let $h = [f, \sigma^k(g)]$. Then $h(k) = f(k)^{-1}g(0)^{-1}f(k)g(0) \neq 1$ but h(i) = 1 for i < k and for $i \geq n$. Thus h has strictly smaller support and so we are done by induction. \square

Two more observations. First σ is a group automorphism of \mathbf{G} which also respects the unary operations S, *i.e.*, σ commutes with every $s \in S$. Second the map $f \mapsto f^{-1}\sigma(f)$ is not onto. Indeed, if the coordinates of an element of the form $f^{-1}\sigma(f)$ are multiplied together backwards, the answer is 1.

Thus combining these facts we see that Lemma 4 of §5.2 of [4] does not hold under the weaker hypothesis that **Con A** is a finite dimensional modular lattice. Indeed, let **A** is the algebra constructed above and let τ is the identity automorphism on **G**. Then, if we let $\alpha = \overline{\sigma}$, $\beta = \eta_1$, $\alpha' = \eta_0$, and $\beta' = \overline{\tau}$, every pair of these elements join to $1_{\mathbf{A}}$ and meet to $0_{\mathbf{A}}$ and α and α' permute as do β and β' . However, α and β' do not permute.

On the other hand it follows easily from Lemma 7 of §5.2 that the four algebras, \mathbf{A}/α , \mathbf{A}/α' , \mathbf{A}/β , and \mathbf{A}/β' , are pairwise modular isotopic. Thus this example does not answer the problem of §5.3, even for the isotopic case.

References

- 1. R. Freese, Notes on direct decompositions, preprint.
- 2. H. P. Gumm, Is there a Mal'cev theory for single algebras?, Algebra Universalis 8 (1978), 320–329.
- 3. H. P. Gumm, Algebras in congruence permutable varieties: Geometrical properties of affine algebras, Algebra Universalis 9 (1979), 8–34.
- 4. Ralph McKenzie, George McNulty and Walter Taylor, Algebras, Lattices, Varieties, Volume I, Wadsworth and Brooks/Cole, Monterey, California, 1987.

UNIVERSITY OF HAWAII, HONOLULU, HI 96822 E-mail address: ralph@math.hawaii.edu