ON EXTENDING LEMMA 4

RALPH FREESE

In §5.2 and §5.3 of [4] the authors present two famous direct decomposition the-
orems. The Birkhoff-Ore Theorem states that an algebra A with permuting con-
gruences and a one-element subalgebra has unique factorization as a direct product
of directly indecomposable algebras provided that Con A is finite dimensional.
Jénsson was able to prove a similar theorem, only assuming that Con A is mod-
ular, provided A is finite. (Without the assumption of a one-element subalgebra,
ones gets isotopic versions of both of these theorems, see [4].) A very clear proof,
emphasizing the common aspects of these theorems, is given in [4]. The authors ask
if these theorems have a common generalization: does an algebra with a finite di-
mensional modular congruence lattice have unique factorization? Lemma 4 of §5.2
of [4] shows exactly where the finiteness of A is used in Jénsson’s result to prove
certain congruences permute. The authors point out that if this lemma could be
proved under the weaker assumption that Con A is a finite dimensional modular
lattice then the desired generalization would be valid.

Lemma 4 concerns four congruences, a, ', 3, and ', such that a and o form
a complementary permuting pair as do 3 and 3’. Moreover,

aNf =d N3 =0.

The desired conclusion is that o and " also permute. In [1] we have been able to
prove this under the assumption that the sublattice of Con A generated by these
four elements does not have My as a homomorphic image.

However in this note we construct an algebra which shows that the full general-
ization of Lemma 4 is not valid.

Preliminaries. Let G be a group and let S be a set of endomorphism of G.
Assume that G has no S-invariant subgroups. We define a unary algebra

A= <G X G7 fa,b,s>a,b€G,sES

where

fap.s(x,y) = (as(x), s(y)b).
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Theorem 1 (Gumm [2], [3]). For the algebra A defined above, we have the follow-
ng.
(1) Both the projections kernels, no and 11, are congruences on A.

(2) If o is an automorphism of G which respects, i.e. commutes with, every
element of S, then

& = {{{a,b), () : ao(b) = co(d)}

s a congruence on A. Moreover, every element of Con A, except Oa, 1a,
No, and 1n1, has this form.

(3) Con A = M, where n is two more than the cardinality of the set of
automorphisms of G which respect S.

(4) n; permutes with every element of Con A, fori =0, 1.

Proof. 1t is straightforward to verify that & is a congruence and that if ¢ and 7
are distinct, then & # 7. The proof of the second statement of (2) is given in
Lemma 3.4 of [2], which Gumm credits to Wolk. The other parts of the theorem
are either elementary or follow from (2). O

The next lemma tells when & and 7 permute.

Lemma 2. Let o and 7 be distinct automorphisms of G which respect S.

(1) The congruences & and T permute if and only if the map x — o(z) " 1(x),
from G to G, is onto.

(2) The map x — o(x)"17(x) is always one-one.

(3) If G is finite, then @ and T permute.

(4) If G is abelian, then @ and T permute.

Proof. Since o and 7 are distinct, so are @ and 7. Thus ¢ V7 = 1. Hence &
and 7 permute if and only if for all a, b, ¢, d € G there are z, y € G such that
(a,b) 7 (x,y) T (c,d). This holds if and only if

ao(b) = zo(y) xz7(y) = er(d).

Eliminating z from these equations, we see that @ and 7 permute if and only if
there is a y such that

a(y) " r(y) = o(b)a ler(d).

since the right side of the above equation can represent any element of G, (1)
follows.

The second part follows from the fact that {x € G : o(z) = 7(x)} is an S-
invariant subgroup of G. (3) follows from (2). When G is abelian, {o(z)~'7(z) :
x € G} is also an S-invariant subgroup of G, and hence must be all of G. O

The example. Let H be a simple, nonabelian group. Let G be the direct sum of
infinitely many copies of H indexed by Z, i.e.,
G ={f € H”: f(i) = 1 for all but finitely many i}.

Let o be the shift automorphism of G, i.e., (6f)(i) = f(i — 1). Let T be the set of
automorphisms on G arising from inner automorphisms of H, i.e., each s € T has
the form (sf)(i) = 271 f(i)z for some x € H independent of i. Let S =T Uo.

Theorem ‘gumm’

Theorem ‘perm’
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Lemma 3. G has no nontrivial subgroups invariant under S.

Proof. We need to show that if f € GG is not 1, then the S-subgroup of G generated
by f is G. We prove this by induction on the size of the support of f. If the support
of fis1,say f(i) = 1 foralli # 0 but f(0) # 1, then using the inner automorphisms
and the fact that H is simple, we obtain elements whose 0" coordinate is arbitrary
and whose other coordinates are all 1. Using o we can move this to any coordinate
and by using multiplication we can generate an arbitrary element in G.

Now suppose that the support of f is at least 2. We may assume that the support
of f lies in {0,1,...,n — 1} and that f(0) # 1. Let k be the next nonidentity
coordinate. Again since H is simple, we can generate g from f such that g(0) is
arbitrary. In particular, we may assume that ¢g(0) does not commute with f(k). Let
h = [f,c%(g)]. Then h(k) = f(k)~*g(0)~1f(k)g(0) # 1 but h(i) = 1 for i < k and
for i > n. Thus A has strictly smaller support and so we are done by induction. [

Two more observations. First ¢ is a group automorphism of G which also re-
spects the unary operations S, i.e., 0 commutes with every s € S. Second the map
f — f~lo(f) is not onto. Indeed, if the coordinates of an element of the form
f~to(f) are multiplied together backwards, the answer is 1.

Thus combining these facts we see that Lemma 4 of §5.2 of [4] does not hold under
the weaker hypothesis that Con A is a finite dimensional modular lattice. Indeed,
let A is the algebra constructed above and let 7 is the identity automorphism on G.
Then, if we let « =7, 8 =11, &’ =1y, and 3’ = 7, every pair of these elements join
to 1o and meet to 0o and « and o’ permute as do 3 and 3. However, o and 3’
do not permute.

On the other hand it follows easily from Lemma 7 of §5.2 that the four algebras,
A/a, AJo’, A/B, and A/, are pairwise modular isotopic. Thus this example
does not answer the problem of §5.3, even for the isotopic case.
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