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In §5.2 and §5.3 of [4] the authors present two famous direct decomposition the-
orems. The Birkhoff-Ore Theorem states that an algebra A with permuting con-
gruences and a one-element subalgebra has unique factorization as a direct product
of directly indecomposable algebras provided that Con A is finite dimensional.
Jónsson was able to prove a similar theorem, only assuming that Con A is mod-
ular, provided A is finite. (Without the assumption of a one-element subalgebra,
ones gets isotopic versions of both of these theorems, see [4].) A very clear proof,
emphasizing the common aspects of these theorems, is given in [4]. The authors ask
if these theorems have a common generalization: does an algebra with a finite di-

mensional modular congruence lattice have unique factorization? Lemma 4 of §5.2
of [4] shows exactly where the finiteness of A is used in Jónsson’s result to prove
certain congruences permute. The authors point out that if this lemma could be
proved under the weaker assumption that Con A is a finite dimensional modular
lattice then the desired generalization would be valid.

Lemma 4 concerns four congruences, α, α′, β, and β′, such that α and α′ form
a complementary permuting pair as do β and β ′. Moreover,

α ∧ β′ = α′ ∧ β = 0.

The desired conclusion is that α and β′ also permute. In [1] we have been able to
prove this under the assumption that the sublattice of Con A generated by these
four elements does not have M4 as a homomorphic image.

However in this note we construct an algebra which shows that the full general-
ization of Lemma 4 is not valid.

Preliminaries. Let G be a group and let S be a set of endomorphism of G.
Assume that G has no S-invariant subgroups. We define a unary algebra

A = 〈G × G, fa,b,s〉a,b∈G, s∈S

where

fa,b,s(x, y) = 〈as(x), s(y)b〉.
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Theorem 1 (Gumm [2], [3]). For the algebra A defined above, we have the follow- Theorem ‘gumm’

ing.

(1) Both the projections kernels, η0 and η1, are congruences on A.

(2) If σ is an automorphism of G which respects, i.e. commutes with, every

element of S, then

σ = {〈〈a, b〉, 〈c, d〉〉 : aσ(b) = cσ(d)}

is a congruence on A. Moreover, every element of Con A, except 0A, 1A,

η0, and η1, has this form.

(3) Con A ∼= Mn, where n is two more than the cardinality of the set of

automorphisms of G which respect S.

(4) ηi permutes with every element of Con A, for i = 0, 1.

Proof. It is straightforward to verify that σ is a congruence and that if σ and τ
are distinct, then σ 6= τ . The proof of the second statement of (2) is given in
Lemma 3.4 of [2], which Gumm credits to Wolk. The other parts of the theorem
are either elementary or follow from (2). �

The next lemma tells when σ and τ permute.

Lemma 2. Let σ and τ be distinct automorphisms of G which respect S. Theorem ‘perm’

(1) The congruences σ and τ permute if and only if the map x 7→ σ(x)−1τ(x),
from G to G, is onto.

(2) The map x 7→ σ(x)−1τ(x) is always one-one.

(3) If G is finite, then σ and τ permute.

(4) If G is abelian, then σ and τ permute.

Proof. Since σ and τ are distinct, so are σ and τ . Thus σ ∨ τ = 1. Hence σ
and τ permute if and only if for all a, b, c, d ∈ G there are x, y ∈ G such that
〈a, b〉 σ 〈x, y〉 τ 〈c, d〉. This holds if and only if

aσ(b) = xσ(y) xτ(y) = cτ(d).

Eliminating x from these equations, we see that σ and τ permute if and only if
there is a y such that

σ(y)−1τ(y) = σ(b)−1a−1cτ(d).

since the right side of the above equation can represent any element of G, (1)
follows.

The second part follows from the fact that {x ∈ G : σ(x) = τ(x)} is an S-
invariant subgroup of G. (3) follows from (2). When G is abelian, {σ(x)−1τ(x) :
x ∈ G} is also an S-invariant subgroup of G, and hence must be all of G. �

The example. Let H be a simple, nonabelian group. Let G be the direct sum of
infinitely many copies of H indexed by Z, i.e.,

G = {f ∈ HZ : f(i) = 1 for all but finitely many i}.

Let σ be the shift automorphism of G, i.e., (σf)(i) = f(i− 1). Let T be the set of
automorphisms on G arising from inner automorphisms of H, i.e., each s ∈ T has
the form (sf)(i) = x−1f(i)x for some x ∈ H independent of i. Let S = T ∪ σ.
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Lemma 3. G has no nontrivial subgroups invariant under S. Theorem ‘lemma1’

Proof. We need to show that if f ∈ G is not 1, then the S-subgroup of G generated
by f is G. We prove this by induction on the size of the support of f . If the support
of f is 1, say f(i) = 1 for all i 6= 0 but f(0) 6= 1, then using the inner automorphisms
and the fact that H is simple, we obtain elements whose 0th coordinate is arbitrary
and whose other coordinates are all 1. Using σ we can move this to any coordinate
and by using multiplication we can generate an arbitrary element in G.

Now suppose that the support of f is at least 2. We may assume that the support
of f lies in {0, 1, . . . , n − 1} and that f(0) 6= 1. Let k be the next nonidentity
coordinate. Again since H is simple, we can generate g from f such that g(0) is
arbitrary. In particular, we may assume that g(0) does not commute with f(k). Let
h = [f, σk(g)]. Then h(k) = f(k)−1g(0)−1f(k)g(0) 6= 1 but h(i) = 1 for i < k and
for i ≥ n. Thus h has strictly smaller support and so we are done by induction. �

Two more observations. First σ is a group automorphism of G which also re-
spects the unary operations S, i.e., σ commutes with every s ∈ S. Second the map
f 7→ f−1σ(f) is not onto. Indeed, if the coordinates of an element of the form
f−1σ(f) are multiplied together backwards, the answer is 1.

Thus combining these facts we see that Lemma 4 of §5.2 of [4] does not hold under
the weaker hypothesis that Con A is a finite dimensional modular lattice. Indeed,
let A is the algebra constructed above and let τ is the identity automorphism on G.
Then, if we let α = σ, β = η1, α′ = η0, and β′ = τ , every pair of these elements join
to 1A and meet to 0A and α and α′ permute as do β and β′. However, α and β′

do not permute.
On the other hand it follows easily from Lemma 7 of §5.2 that the four algebras,

A/α, A/α′, A/β, and A/β′, are pairwise modular isotopic. Thus this example
does not answer the problem of §5.3, even for the isotopic case.
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