
LECTURES ON PROJECTIVE PLANES

RALPH FREESE

A projective plane can be formally axiomatized as a triple 〈P,L, I〉, where
P is the set of points, L is the set of lines, and I ⊆ P × L is an incidence
relation between them satisfying the axions:

(1) Each pair of distinct points determines a unique line.
(2) Each pair of distinct lines determines a unique point.
(3) There is a quadrangle, i.e., four points, no three on a line.

(Note we use the obvious geometric and combinatorial terminology.)
Here are some factoids:

• If we take I as an order relation and add a least and greatest element
we obtain a modular lattice of height 3.
• The dual of a projective plane is also a projective plane (but not

always isomorphic to the original plane).
• The number of points on a line is invariant; the order of a plane is

one less than this number.

Coordinates. Take a quadrangle O, E, X, and Y . Let R be a set of size n,
where n is the order of the plane. Give the points and lines of the plane
coordinates as indicated in the figures. Define a ternary operation on R by

y = t(x,m, k) if and only if [x, y] I 〈m, k〉.

For a plane coordinatized by a (skew) field this just says that y = xm+ k.
The algebra R = 〈R, t, 0, 1〉 so constructed satisfies:

(1) t(0, a, b) = t(a, 0, b) = b.
(2) t(1, a, 0) = t(a, 1, 0) = a.
(3) Given a, b, c, and d with a 6= c, there is a unique x such that

t(x, a, b) = t(x, c, d).
(4) Given a, b, c there is a unique x such that t(a, b, x) = c.
(5) Given a, b, c, and d with a 6= c, there is a unique pair x, y such that

t(a, x, y) = b and t(c, x, y) = d.

A finite algebra satisfying the first, second and fourth condition will satisfy
the third if and only if it satisfies the fifth. A algebra satisfying these axioms
is called a planar ternary ring. The Germans use the more appropriate term
ternary field. Any ternary field can be used to coordinatize a projective
plane.
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Although there has been a great deal of work on projective planes, there
is not much on ternary fields. One wonders if tame congruence theory,
especially some of the extensions mentioned in Keith’s talk, might help.
Here is an unpublished result of mine:

Theorem 1. A finite ternary field has a ternary discriminator.

If R is a ternary field then the term operations

x+ y = t(1, x, y)

x ◦ y = t(x, y, 0)

are both loops with identity elements 0 and 1, respectively. Not all ternary
fields satisfy t(a, b, c) = a ◦ b + c; those that do are called linear. In such
ternary rings we will often take ◦ and + as the basic operations.

Homogeneous Coordinates. The lattice of subspaces of a three dimen-
sion vector space over a skewfield F forms a projective plane. The points
are the one dimensional subspaces and so can be represented by any nonzero
member. To make a ‘normal form’ we pick any nonzero member, and mul-
tiply the vector by the reciprocal of the third coordinate if this is not zero.
Otherwise we use the first coordinate unless that is also 0. If both are 0 we
use [0, 1, 0]. Thus the points are the vectors

[−x, y, 1] ordinary affine point (x, y)

[1,−m, 0] point at infinity on all lines of slope m

[0, 1, 0] end of the y–axis

Similarly we represent the lines with the vectors:

〈m, 1,−b〉 line of slope m and y–intercept b

〈1, 0, a〉 vertical line through (a, 0)

〈0, 0, 1〉 line at infinity

With this setup a point is incident with a line if and only if their dot
product is 0. In fact, if R is a linear ternary field such that 〈R,+〉 is a
group and (−a)b = −ab, then the plane coordinatized in this way will be
isomorphic to the one coordinatized by the ternary field (in the usual way).

Hall Planes

A right quasifield is a linear ternary field in which + is associative (Carte-
sian group) and the right distributive law holds: (a+ b)c = ac+ bc.

Lemma 2. Addition is commutative in a right quasifield and (−a)b = −ab.

Proof: For the second 0 = (−a+ a)b = (−a)b+ ab, showing (−a)b = −ab.
The commutativity is harder, but we don’t need it.
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Let F be a field and let

f(x) = x2 − rx− s

be an irreducible polynomial over F. Let R = F × F . Define addition on R
coordinatewise and multiplication by

(1) (a, b) ◦ (c, d) =

{
(ac, bc) if d = 0

(ac− bd−1f(c), ad− bc+ br) if d 6= 0

Then R = 〈R,+, ◦, 0, 1〉 is a right quasifield known as a Hall quasifield. F can
be viewed as a subalgebra under the embedding a 7→ (a, 0). These elements
commute with all elements of R. Moreover, if a ∈ F then a(xy) = (ax)y.
Easy calculations prove the next lemma which incidently shows that Hall
quasifields are not fields except in very small cases (actually only if |F | = 2).

Lemma 3. If m ∈ R− F then f(m) = 0.

Algorithm 1, which follows [2, p. 364–365], shows how to solve the equa-
tion xm = xn+ v when n 6= m in a Hall quasifield.

For a ∈ F we indentify a and (a, 0). The case when both m and n are
in F is easy; see line 6. Assume m 6= 0. Then we can write any y ∈ R
in the form y′1 + y′2m for unique y′1 and y′2 ∈ F ; see lines 12 and 13. The
most difficult case is when both m2 6= 0 and n2 6= 0. Using the definition of
multiplication (1) and Lemma 3 to calculate m(a+ bm) and expressing the
result in the form c+ dm, one obtains the identity

m(a+ bm) = −a2b−1 + rb−1a− b−1s+ (r − a)m

Writing n = a+ bm, v = v1 + v2m, x = x1 +x2m the equation xm = xn+ v
becomes (

−a a2b−1 − ab−1r − b−1s+ s
1− b a

)(
x1
x2

)
=

(
v1
v2

)
The determinant of this system can be written as

−b−1(a2 − ra(1− b)− s(1− b)2)

If b = 1 then a 6= 0 as m 6= n and the determinant is not zero in this case.
If b 6= 1 then the determinant can be expressed as b−1(1 − b)2f(a/(1 − b)),
which is not zero because f(x) is irreducible.

Because the right distributive law holds, to solve mx = nx+ v for n 6= m
it is enough to solve mx = v, for m 6= 0. If m = (a, b) and v = (c, d), then x
is given by the following:

x =


(c/a, 0) if ad− bc = 0 and a 6= 0,

(d/b, 0) if ad− bc = 0 and a = 0,

( cd−rbc−sabad−bc , d
2−rbd−sb2
ad−bc ) if ad− bc 6= 0.
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1 % Given m = (m1,m2), n = (n1, n2) and v = (v1, v2)
2 % in R with m 6= n.
3 procedure solve(m,n, v)
4 if m2 = 0 then
5 if n2 = 0 then
6 v ◦ ((m1 − n1)−1, 0)
7 else
8 solve(n,m,−v)
9 endif

10 else
11 % Write v = (v′1, 0) +m ◦ (v′2, 0).

12 v′1 ← v1 −m1m
−1
2 v2

13 v′2 ← m−12 v2
14 if n2 = 0 then

15

(
x′1
x′2

)
←
(
−n1 s

1 r − n1

)−1(
v′1
v′2

)
16 (x′1, 0) + (x′2, 0) ◦m
17 else
18 % Write n = (a, 0) +m ◦ (b, 0).

19 a← n1 −m1m
−1
2 n2

20 b← m−12 n2

21

(
x′1
x′2

)
←
(
−a a2b−1 − arb−1 − sb−1 + s

1− b a

)−1(
v′1
v′2

)
22 (x′1, 0) + (x′2, 0) ◦m
23 endif
24 endif
25 endprocedure

Algorithm 1: Solving xm = xn+ v.

Hanna’s Quadrangles

If r + s = 1 then f(1) = 0, but f(x) is irreducible. Thus let k = (r + s−
1)−1.

All the incidences of Table 1 are easily seen to hold except for two. That
[(ks, k),−(ks, k), 1] is on 〈(0, 1), 1,−(0, 1)〉 requires the definition of k but
does always hold. The second is covered in the next lemma.

Lemma 4. [(ks, k), 0, 1] is on 〈(1, 1), 1,−(0, 1)〉 if and only if 2s+ r = 1.

In a plane with 2s+r = 1 (note this implies k = −s−1 we can use Hanna’s
quadrangle to introduce plus and times operations. Then ‘adding one’ will
induce a permutation δ on the elements of one of the lines. Specifically
we let a1 = [0, 0, 1], a2 = [0, 1, 0], a3 = [(−1, k), 0, 1], c13 = [1, 0, 1], and
c23 = [(−1, k), (1,−k), 1]. Any point on the line a1 ∨ a2 except a2 has the
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Table 1. Hanna’s quadrangle.

〈1, 0, 0〉 : [0, 0, 1] [0, 1, 0] [0, (0, 1), 1]
〈0, 1, 0〉 : [0, 0, 1] [1, 0, 1] [(ks, k), 0, 1]
〈1, 0,−(ks, k)〉 : [0, 1, 0] [(ks, k), 0, 1] [(ks, k),−(ks, k), 1]
〈1, 1, 0〉 : [0, 0, 1] [1,−1, 1] [(ks, k),−(ks, k), 1]
〈(1, 1), 1,−(0, 1)〉 : [1,−1, 1] [(ks, k), 0, 1] [0, (0, 1), 1]
〈(0, 1), 1,−(0, 1)〉 : [1, 0, 1] [(ks, k),−(ks, k), 1] [0, (0, 1), 1]
〈1, 0,−1〉 : [0, 1, 0] [1, 0, 1] [1,−1, 1]

form [0, (c, d), 1]. If we take this point and join it with a3, then meet that line
with a2∨ c13, then join that point with c23, then meet that line with a1∨a2,
we obtain a point [0, (c′, d′), 1]. The map (c, d) 7→ (c′, d′) is a permutation
of R given by

c′ =


2c2 + c− 4cs if c = sd,
−c2−s−2cs+ds+2cds

2(ds−c) if det = 0,
−c2+c3−s+cs+2c2s+ds+cds−4c2ds−4ds2−4cds2+2d2s2+4cd2s2

det if det 6= 0.

d′ =


sd2 − 2sd+ 1 if c = sd,
−1+d−cd−2ds+2d2s

ds−c if det = 0,
−1+2c+d−2cd+c2d−5ds+2cds+4d2s−4cd2s−4d2s2+4d3s2

det if det 6= 0.

where

det = c2 − s+ 2cs+ ds− 4cds− 4ds2 + 4d2s2.

Note if det = 0 for (c, d) then c′ = sd′.
Of course if the subplane generated by Hanna’a quadrangle and one other

point on the line a1 ∨ a2 is the whole plane then Hanna’s Fano subplane is
maximal. If we choose F = Z/pZ then the Hall plane has order p2. By
Baer’s Theorem a proper subplane can have order at most p. So if a cycle
of the permutation described above has size greater than p (actually p− 2)
then the sublattice generated by the quadrangle and a point from the cycle
will generate the whole plane.

Now finding the cycle decomposition of this permutation for various values
of p and all possible values of s exhibits the following properties:

• There are two 2–cycles: (0, 0) ↔ (0, 1) and (2s, 1) ↔ (2s, 2). The
former is first cycle lexicographically, of course, and the latter is
the last. In the examples checked, the quadrangle and the second
2–cycle generated the whole plane.
• Every other cycle has order at least p+2. For some values of s there

are cycles of size p+ 2.
• The cycle length come in pairs except for one which may have odd

length.



6 RALPH FREESE

For example, with p = 503, s = 23 gives cycle lengths 2, 253005, and 2.
With s = 2 the lengths are 2, 141897, 48993, 48993, 6056, 6056, 505, 505,
and 2.

Define the type of an element (c, d) of R as follows. If c = ds the type is 0;
if det as defined above is 0 then (c, d) has type 1; otherwise it has type 2.

Lemma 5. If (c, d) has type 1 then (c′, d′) = δ(c, d) has type 0. If (c, d) has
type 0 then (c′, d′) = δ(c, d) has type 1 if and only if (c, d) is either (0, 0) or
(2s, 2).

Proof: If (c, d) has type 1 we use the formula for (c′, d′) above to evalulate
c′−d′s. This evaluates to det, which is 0 by assumption. If (c, d) has type 0
so c = ds, det(c′, d′) simplifies to 2s2d(d − 2) so we must have d = 0 or 2
and the lemma follows.
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