INSTRUCTIONS: Write legibly. Indicate your answer clearly. Show all work; explain your answers. Answers with work not shown might be worth zero points. No calculators, cell phones, or cheating.

Problem	Worth	Score
1	24	
2	24	
3	10	
4	28	
5	12	
6	16	
7	16	
8	8	
9	16	
10	18	
11	16	
12	12	
Total	200	

(6) 0. Extra Credit: Show that for all x and $y,|\sin (x)-\sin (y)| \leq|x-y|$.
(24) 1. Compute each of the following limits or show that they do not exist. Show your work!
(a) $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}+7 x+12}$
(b) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
(c) $\lim _{x \rightarrow 0} \frac{x}{\sin 3 x}$
(d) $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{2-x}$
(24) 2. Find the derivatives of each of the following functions. Do not simplify!
(a) $f(x)=x^{2} \sqrt{\sin x}$

$$
f^{\prime}(x)=
$$

(b) $g(x)=\frac{x^{2}+x+1}{\sqrt{x^{2}+1}}$

$$
g^{\prime}(x)=
$$

(c) $h(x)=\int_{\sqrt{x}}^{5} \sin ^{5} t d t$

$$
h^{\prime}(x)=
$$

(10) 3. Let $f(x)=\frac{1}{3 x}$. Use the definition of the derivative to compute $f^{\prime}(2)$. No work, no credit.
(28) 4. Evaluate the following integrals. Show your work!
(a) $\int x^{2} \sqrt{1+10 x^{3}} d x$
(b) $\int_{0}^{1} \frac{x}{\sqrt{x+1}} d x$
(c) $\int_{0}^{1}\left(x^{2}+1\right)(3 x-2) d x$
(d) $\int_{0}^{\pi / 2} \sin x \cos ^{3} x d x$
(12) 5. Find the equation of the tangent line to the curve $x^{3}+y^{3}=9 x y$ at the point $(4,2)$. Show your work!
(16) 6. $100 \mathrm{~m}^{3}$ of oil is spilled when a tanker collides with a tuna boat. The resulting oil slick forms a right circular cylinder on the surface of the water. If the thickness (h) of the slick is decreasing at a rate of $0.001 \mathrm{~m} / \mathrm{sec}$, how fast is the radius (r) increasing when the slick is 0.01 m thick? Note: $V=\pi r^{2} h$.
(16) 7. A rectangular box with volume $18 \mathrm{ft}^{3}$ is to be built with a square base and no top. The material used for the bottom panel costs $\$ 2.00$ per ft^{2} while the material used for the side panels cost $\$ 1.50 \mathrm{per} \mathrm{ft}^{2}$. Find the minimum cost of such a box. Justify your answer using the methods of calculus.
(8) 8. Set up the Riemann sum approximation to the integral $\int_{0}^{4} x^{3} d x$ by partitioning the interval [0, 4] into 4 subintervals of equal length and using the right endpoint of each subinterval to calculate the height of the corresponding rectangle.
(16) 9. Let $f(x)=x^{2}-4 x+3$. The graph of $y=f(x)$ is shown below.
(a) Compute $\int_{-1}^{4} f(x) d x$
(b) Find the total area between the graph and the x-axis for x between -1 and 4 .

(18) 10. Let $f(x)=\frac{x^{2}}{(x-3)^{2}}$. Answer the question below. Show all reasoning using the methods of calculus. Note: $f^{\prime}(x)=\frac{-6 x}{(x-3)^{3}}$ and $f^{\prime \prime}(x)=\frac{12 x+18}{(x-3)^{4}}$.
(a) Find all points where f is not continuous.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.
(c) Find the intervals where f is concave up and the intervals where f is concave down.
(d) Find all local extrema.
(e) Find all inflection points.
(f) Find the equations of all asymptotes.
(16) 11. Solve the initial value problem (In other words, find a function $y(x)$ that satisfies both equations.):

$$
\frac{d y}{d x}=3 \sin (2 x)+6 \quad \text { and } \quad y(0)=1
$$

(12) 12. Let $f(x)=3 x^{2}+5 x-9$.
(a) Explain why f satisfies the hypotheses of the Mean Value Theorem over the interval $[0,3]$.
(b) Find a point $c \in(0,3)$ such that the slope of the tangent line at $(c, f(c))$ is the average rate of change of f over the interval.

