Math 241 Final Exam

Fall, 2012

Name:	ID:
Signature:	Instructor:
	worth two points each. No partial credit will be awarded. Il credit. Give complete and careful solutions. Show all of le as much detail as you can.
Part A	Part B
Page A1	Page B1
Page A2	Page B2
Page A3	Page B3
	Page B4
	Page B5
TOTAL	Page B6
	Page B7
	Page B8
	Page B9
	Page B10
	TOTAL
GRAND TOTAL	

PART A - This section contains 10 problems worth two points each. No partial credit will be awarded.

Sketch the graph of an increasing function that is defined and continuous on $(-\infty,\infty)$, and differentiable everywhere except at x=0 and at x=2.

2. —

Find the limit $\lim_{x\to 3} \frac{x^2 + 2x - 15}{x^2 - 2x - 3}$.

3. —

Find the limit $\lim_{x\to 1^-} \frac{|x-1|}{x-1}$.

1	Procioals	z stata tha	"Intermediate	Value Theorem	for Con	tipuous E	unctions"
4.	rrecisery	y state the	miermediate	value Theorem	TOT CON	imuous r	unctions.

5. — Find the limit
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x}}{x + 2}$$
.

6. — Find the limit
$$\lim_{x\to 0} \frac{\sin(7x)}{4x}$$
.

7. — What is the absolute minimum value of the function
$$f(x) = x^4 - 2x^2$$
 on the interval $[-2,2]$?

Find the general antiderivative of $cos(2x) + x^2$.

Use four rectangles of equal width and the rightendpoint values to find the Riemann sum for f(x) = $x^3 + x$ on the interval [0, 4].

10. Evaluate: $\int_{1}^{8} \frac{1}{\sqrt[3]{x}} dx$

solutions. Show all of your work on the exam and provide as much detail as you can							
1. (8 pts.) Using only the definition of "derivative", find $f'(x)$, where $f(x) = \sqrt{2x}$.							

2. (6 pts.) Find the equation of the line tangent to the graph of

$$y^4 - 3xy^3 + y^2 = 6x^3 - 5x^2y$$

at the point (1, 2).

3.	(8 pts.) Water is withdrawn from a conical reservoir 20 feet in diameter and 20 feet deep (vertex down) at a constant rate of 8 cubic feet per minute. How fast is the water level falling at the instant when the depth of the water is 8 feet? [Hint: $V_{cone} = \frac{1}{3}\pi r^2 h$].
	Answer

Ļ.	(8 pts.)	Use differential a	approximatio	on, or the lin	earization m	nethod, to es	stimate $\sqrt[4]{15.5}$
	Answe	r					

5. (10 pts.) Given $f(x) = \frac{1-x^2}{1+x^2}$ with $f'(x) = \frac{-4x}{(1+x^2)^2}$ and $f''(x) = \frac{12x^2-4}{(1+x^2)^3}$

1 pt. _____ List any horizontal or vertical asymptotes of f(x).

1 pt. _____ On what interval(s) is f(x) increasing?

1 pt. _____ On what interval(s) is f(x) concave down?

1 pt. _____ Identify any local extrema (give both coordinates).

1 pt. _____ Locate the *x*-coordinate of any points of inflection.

5 pts. Sketch the graph of f(x), marking clearly the asymptotes, coordinates of any local extrema and points of inflection.

5 .	(8 pts.) A fiber board shipping crate with square base and top is constructed with double thickness on the bottom for added strength. If the volume of the crate is 96 cubic feet, find the dimensions which will minimize the needed material.
	Answer

7. (8 pts.) If $f(x) = \int_1^x \sqrt{1 + \sin t} \, dt$, what is f''(0)?

8. (8 pts.) Evaluate the following integral: $\int_{-\pi/3}^{\pi/3} \sin x \, (4 + 3\cos x) \, dx.$

9.	(8 pts.) Find the area	of the region bound	led by the parabola	as, $y = x^2 - 1$ and $y = 1 - x^2$.
----	------------------------	---------------------	---------------------	---------------------------------------

ormed