Math 241	Name:	
Fall 2015	Section Number:	
Final Exam	Instructor:	

Question	Points	Score
1	9	
2	9	
3	6	
4	24	
5	10	
6	8	
7	12	
8	8	
9	6	
10	16	
11	9	
12	20	
13	4	
14	9	
Total:	150	

Read all of the following information before starting the exam.

- Electronic devices (calculators, cell phones, computers), books, and notes are not allowed.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work and make clear what your final solution is (e.g. by drawing a box around it).
- This test has 14 pages total including this cover sheet and is worth 150 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

- 1. Compute the following limits. If the limit does not exist, state so. If the limit is either positive or negative infinity, say which.
 - (a) (3 points)

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 2x}$$

(b) (3 points)

$$\lim_{x \to \infty} \frac{7 - \sqrt{x}}{7 + \sqrt{x}}$$

(c) (3 points)

$$\lim_{x \to 0} x \sin \frac{1}{x}$$

2. Consider the limit

$$\lim_{h\to 0}\frac{\sqrt{4+h}-2}{h}$$

(a) (5 points) Find the limit.

(b) (4 points) This limit represents the derivative of some function f(x) at some number a. Find f(x) and a

$$f(x) =$$

3. (6 points) Find all numbers a such that the function

$$f(x) = \begin{cases} 2x^3 & \text{if } x < a \\ x^4 + x^2 & \text{if } x \ge a \end{cases}$$

is continuous. Please circle your answer.

- 4. Differentiate the following functions. Do not simplify your answers.
 - (a) (6 points)

$$F(x) = \sqrt{x} \ (x^5 + 3)$$

(b) (6 points)

$$g(x) = 7(\sin(x^5))^2$$

(c) (6 points)

$$f(x) = \frac{\tan(\pi^3 x)}{x^2 + 1}$$

(d) (6 points)

$$g(x) = \int_{x}^{x^2} \frac{1}{t^3 + 1} dt$$

5. (10 points) Find an equation of the tangent line to the graph of the function $f(x) = x \cos x$ at $x = \pi/2$.

6. (8 points) Consider the curve

$$x^3 + \sin y = x^3 y.$$

Find the x-coordinate of a point where the curve has a horizontal tangent line.

7. (12 points) Find maximum and minimum values of the function

$$f(x) = \frac{x}{(2x+1)^2}$$

on the interval $0 \le x \le 2$.

8. (8 points) Two straight streets meet at right angles. Person A is walking on one of the streets towards the East at 2 miles per hour, and person B is walking on the other street towards the South at 1 mile per hour; both are walking towards the intersection. When A is 3 miles from the intersection and B is 4 miles from the intersection, at what speed does the distance between A and B shrink?

9. (6 points) Use linear approximation to estimate the number $(.95)^{10}$.

10. The graph of a function f is given below. Set

$$g(x) = \int_0^x f(t) \ dt.$$

Note that the graph of the function f is given directly below. All the questions below are about the function g, NOT f.

- (a) (2 points) Find g(0).
- (b) (2 points) Find g(3).
- (c) (2 points) Is the function g differentiable on (-1,3)? Please choose and circle the correct option:

yes no

(d) (2 points) Indicate all critical numbers for the function g on the interval (-1,3).
(e) (2 points) For which value of x does the function g(x) take its maximum value on the interval [-1,3]?
(f) (2 points) What is the maximum value of the function g(x) on the interval [-1,3]?
(g) (2 points) What is the minimum value of the function g(x) on the interval [-1,3]?
(h) (2 points) Indicate the intervals where the function g is concave up.

11.	(9 points) Find the maximum area of a rectangle which has two vertices on the x -axis, and another two vertices on the parabola $y = 27 - x^2$ above x -axis.	

- 12. Evaluate the integrals
 - (a) (6 points)

$$\int_0^{2\pi} \frac{5 + \cos x}{3} \ dx$$

(b) (6 points)

$$\int \frac{x-5}{(x^2-10x)^2} \ dx$$

$$\int_0^{\pi/3} 160(\cos x)^4 \sin x \ dx$$

13. (4 points) Set up (do not compute) an integral for the area of the region bounded by the curves

$$y = \sin x$$
, $y = \sin x \cos x$

between x = 0 and $x = \pi$.

14. (9 points) The region inside the first quadrant $(x \ge 0, y \ge 0)$ bounded by

$$y = 4x^4, \ x = 0, \ y = 4$$

is rotated around the y-axis. Find the volume.