Math 241, Fall 2018, Final Exam

Name and section number:

Instructor name:

Question	Points	Score
1	20	
2	6	
3	4	
4	20	
5	6	
6	6	
7	10	
8	10	
9	12	
10	10	
11	18	
12	8	
13	10	
14	10	
Total:	150	

- You may not use notes or electronic devices on the test.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work.
- You do **not** need to simplify your answers.
- Good luck!

1. Calculate the following limits. **Do not** use L'Hospital's rule. If the limit is positive or negative infinity, say which.

(a) (5 points)
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$$
.

(b) (5 points)
$$\lim_{x \to 2^+} \frac{(x+1)^2}{2-x}$$
.

(c) (5 points)
$$\lim_{x\to 0} \frac{\sin 3x}{2x(x-3)}$$
.

(d) (5 points)
$$\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + \sin x}$$
.

2. (6 points) Using the definition of the derivative as a limit, compute f'(2) if $f(x) = \sqrt{2x+1}$. (Warning: you will get no credit if you use the rules of differentiation).

3. (4 points) Let
$$f(x) = \begin{cases} Ax & x \le -1 \\ x^2 - 3Ax + 3 & x > -1 \end{cases}$$
.

For which values of A is the function f continuous?

4. Differentiate the following functions. You do not need to simplify your answers.

(a) (5 points)
$$f(x) = \frac{x^3}{2x^2 - 5}$$

(b) (5 points)
$$g(x) = 3x \sin(x^2)$$

(c) (5 points)
$$h(x) = (\sqrt{x} - \frac{1}{x^4} + \pi^3)^5$$

(d) (5 points)
$$R(x) = \int_1^{2x} (t + t^4)^3 dt$$

5. (a) (5 points) Use linear approximation and the fact that $\sqrt{4}=2$ to find an approximation to $\sqrt{3.99}$.

(b) (1 point) Is the exact value for $\sqrt{3.99}$ more or less than the number you calculated in the previous part?

6. (6 points) Find an equation for the tangent line to the graph of $x^3 - 3x^2y + 2xy^2 = 0$ at the point (1,1).

7. (10 points) Superman is chasing a villain who is driving along a straight highway in a car. Superman flies at a speed of 200 feet per second, and at a constant height of 30 feet. The villain is driving at a speed of 100 feet per second. What is the rate of change of the distance between Superman and the villain when Superman is directly above a point that is 40 feet behind the villain's car?

8. (10 points) A landscape artist plans to create a rectangular garden whose area is $10\,m^2$. She plans to enclose three sides of the rectangle using trees that cost \$25 per meter, and to use fencing which costs \$20 per meter on the fourth side. Find the dimensions of the garden that will minimize her cost.

- 9. Let $f(x) = \frac{1}{x^2 1}$. You may use that $f' = \frac{-2x}{(x^2 1)^2}$ and $f'' = \frac{6x^2 + 2}{(x^2 1)^3}$.
 - (a) (2 points) Find the vertical asymptotes of the graph of f.

(b) (2 points) Find the horizontal asymptotes of the graph.

(c) (2 points) Find the intervals where f is increasing.

- Recall that $f' = \frac{-2x}{(x^2-1)^2}$ and $f'' = \frac{6x^2+2}{(x^2-1)^3}$
- (d) (2 points) Find the intervals where f is concave up.

(e) (2 points) Find the maximal value of f in the interval [4,6]

(f) (2 points) Sketch of the graph of y = f(x).

10. Below is the graph of the <u>derivative</u> of the function f in the interval $0 \le x \le 4$.

- (a) (3 points) Find the intervals in which f is increasing.
- (b) (3 points) Find the intervals in which f is concave down.
- (c) (3 points) At which x between 0 and 4 does f attain its maximal value? Explain your answer.

(d) (1 point) Is it possible for the equation f(x)=0 to have 3 solutions in the interval $1\leq x\leq 3$?

11. Compute each of the following.

(a) (6 points)
$$\int (\sqrt{x} - x^{\frac{3}{2}} - \frac{4}{x^2}) dx$$

(b) (6 points)
$$\int_0^{\pi} (\sin x)(\cos x + 2)^3 dx$$

(c) (6 points)
$$\int \frac{x}{\sqrt{x^2 + 1}} dx$$

12.	12. A ball is thrown upwards from a height of 20 meters, at a speed of $15m/s$. The gravity of the earth causes the ball to accelerate downwards at a rate of $10m/s^2$.			
	(a)	(4 points)	Write a function f that describes the height of the ball at time t .	
	(b)	(2 points)	When will the ball reach its highest point?	
	(c)	(2 points)	When will the ball hit the ground?	
	()	(1 /		

13. (a) (2 points) Sketch the region in the plane bounded by the lines $x=0,\,x=4,\,y=x,$ and $y=6-x^2.$

(b) (8 points) Calculate the area of the region you sketched in the previous part.

- 14. Let R be the region bounded by the graphs $y = x^2$ and y = 9x.
 - (a) (5 points) The region R is rotated about the y-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.

(b) (5 points) The region R is rotated about the x-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.