Math 241, Spring 2017, Final Exam

Name and section number:

Instructor name:

Question	Points	Score
1	16	
2	8	
3	16	
4	6	
5	6	
6	7	
7	8	
8	10	
9	12	
10	15	
11	4	
12	6	
13	8	
14	8	
Total:	130	

- You may not use notes or electronic devices on the test.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work.
- You do **not** need to simplify your answers.
- Good luck!

1. Calculate the following limits. **Do not** use L'Hospital's rule. If the limit is positive or negative infinity, say which.

(a) (4 points)
$$\lim_{x \to \infty} \frac{7 - 4x - x^4}{2(x^2 - 2)^2}$$
.

(b) (4 points)
$$\lim_{x \to 1^+} \frac{x^2 - 1}{(x - 1)^3}$$
.

(c) (4 points)
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$$
.

(d) (4 points)
$$\lim_{x\to 0} \frac{\sin 5x}{x(x+1)}$$
.

2. (a) (6 points) Using the definition of the derivative as a limit, compute f'(0) if $f(x) = \frac{1}{2x+1}$. (Warning: you will get no credit if you use the rules of differentiation).

(b) (2 points) The limit $\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$ represents the derivative of some function g at some point a. What is g and what is a?

3. Differentiate the following functions. You do not need to simplify your answers.

(a) (4 points)
$$f(x) = \frac{5}{x^7} - 2x^3 + \sqrt{x} + 7\pi^2$$

(b) (4 points)
$$g(x) = \frac{x^2(x^3+1)}{2-x^5}$$

(c) (4 points)
$$h(x) = (1 + \sin(7x^2))^3$$

(d) (4 points)
$$R(x) = \int_0^{3x} (1+t^3)^5 dt$$

4. (6 points) Use linear approximation and the fact that $\frac{1}{100}=0.01$ to find an approximation to $\frac{1}{102}$.

5. (6 points) Find an equation for the tangent line to the graph of $x^4 + x^2y + y^3 = 3$ at the point (1,1).

- 6. Consider the equation $1 + x = x^3$.
 - (a) (5 points) Explain why the equation has a solution in the interval [1, 2]. State the theorems you use in your explanation.

(b) (2 points) Explain why the equation can't have two solutions in the interval [1,2]. State the theorems you use in your explanation.

7. (8 points) A person flies a kite at a height of 300 feet. The wind carrying the kite moves it away from the person horizontally at a speed of 25 feet per second. What is the rate of change of the length of the kite string (that is - the distance from the person to the kite), when the kite is 500 feet away from the person?

8. (10 points) A rectangular box has a base that is a square. The perimeter of the base plus the height of the box is equal to 3 feet. What is the largest possible volume for such a box, and what are its dimensions? Justify your answer.			

- 9. Let $f(x) = 3x^5 5x^3$.
 - (a) (2 points) find the critical points of f.

(b) (2 points) Classify the critical points of f as local maxima, local minima, or neither.

(c) (2 points) Find the intervals where f is increasing.

(d) (2 points) Find the maximal and minimal values of f in [-2,0].

(e) (2 points) Find the intervals where f in concave up.

(f) (2 points) Give a rough sketch of the graph of y = f(x).

10. Compute each of the following.

(a) (5 points)
$$\int_0^{\frac{\pi}{2}} \sin(x) \cos^5(x) dx$$

(b) (5 points)
$$\int \frac{x^2 - 1}{\sqrt{(x^3 - 3x)}} dx$$

(c) (5 points) Find the function F(x) given that $F'(x) = x^2 + 4x + 5$ and F(1) = 2.

- 11. Let $f(x) = x^2 1$. Partition the interval [1, 4] into 3 equal parts.
 - (a) (2 points) Calculate a Riemann sum for f using the left endpoint of each interval.

(b) (2 points) Is the Riemann sum you calculated in the previous part more or less than $\int_{1}^{4} (x^2 - 1) dx$? Explain your answer.

- 12. For each of the following, answer True or False. No further explanation is required.
 - (a) (2 points) Every differentiable function is also continuous.
 - (b) (2 points) The function $F(x) = \int_0^x \frac{1}{1+t^2+t^4} dt$ is increasing.
 - (c) (2 points) If f'(1) = 0 and f''(1) = 0 then f cannot achieve a local maximum at 1.

13. (8 points) Calculate the area bounded by the graphs of $y = x^2 - 1$ and y = 3x + 3.

- 14. Consider the region R bounded by the graphs of y = 2x, $y = 3 x^2$ and $x \ge 0$.
 - (a) (4 points) The region R is rotated about the y-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.

(b) (4 points) The region R is rotated about the x-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.