## MATH 241 COMMON FINAL EXAM, SPRING 2019

You have 120 minutes.<br>No books, no notes, no electronic devices.<br>You must show all work. no need To simplify answers.

Name $\qquad$
Instructor Name $\qquad$
Section Number $\qquad$

Grade table (for instructor's use only)

1. (16pts) $\qquad$
2. (4pts) $\qquad$
3. (6pts) $\qquad$
4. (20pts) $\qquad$
5. (8pts) $\qquad$
6. (6pts) $\qquad$
7. (7pts) $\qquad$
8. (8pts) $\qquad$
9. (10pts) $\qquad$
10. (18pts) $\qquad$ Total Score (/150 points)
11. (15pts) $\qquad$
12. (8pts) $\qquad$
13. (10pts) $\qquad$
14. (14pts) $\qquad$
15. Calculate the following limits. Do not use L'Hospital's rule. If the limit is infinite, specify whether it is $+\infty$ or $-\infty$.
(a) (4pts) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}$
(b) (4pts) $\lim _{x \rightarrow 0} \frac{x \cos x}{\sin x}$
(c) (4pts) $\lim _{x \rightarrow 2^{-}} \frac{|2 x-4|}{2-x}$
(d) $(4 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{4 x^{3}+\sin x}{2 x^{3}+3}$
16. Consider the function $f(x)$ whose graph is shown below.

(a) (1pt) Find the following limit: $\lim _{x \rightarrow 1^{-}} f(x)$.
(b) (1pt) Find the values $a$ such that $\lim _{x \rightarrow a} f(x)$ does not exist.
(c) (1pt) Find the values $a$ such that $f(x)$ is discontinuous at $x=a$.
(d) (1pt) Find the values $a$ such that $f^{\prime}(a)$ does not exist.
17. (6pts) Use the definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=\frac{4}{x+1}$. (Warning: you will not get credit if you use the rules of differentiation.)
18. Differentiate the following functions. You do not need to simplify your answers.
(a) (5pts) $f(x)=\frac{x-1}{x+1}$
(b) (5pts) $f(x)=(x-1) \cos \left(1+x^{2}\right)$
(c) $(5 \mathrm{pts}) f(x)=\left(x^{2}+\frac{1}{\sqrt{x+1}}+3^{3}\right)^{\frac{3}{2}}$
(d) $(5 \mathrm{pts}) f(x)=\int_{0}^{x^{2}} \frac{d t}{1+\sin ^{2} t}$
19. Consider the equation $x^{5}+2 x-1=0$.
(a) (6pts) Use the Intermediate Value Theorem to show that the given equation has a solution in the interval $[0,1]$.
(b) (2pts) Use Rolle's theorem or the Mean Value Theorem to show that the given equation cannot have more than one solution in the interval $[0,1]$.
20. (6pts) Use linear approximation and the fact that $27^{-\frac{1}{3}}=\frac{1}{3}$ to estimate $28^{-\frac{1}{3}}$.
21. (7pts) Find an equation of the tangent line to the curve $x^{2} y^{2}-2 x=9-y$ at the point $(-2,1)$.
22. (8pts) A stone dropped in a pond sends out a circular ripple whose radius increases at a constant rate of $3 \mathrm{ft} / \mathrm{sec}$. How rapidly is the area enclosed by the ripple increasing at the moment when the radius is equal to 30 ft ?
23. (10pts) Consider the parabola $y=(x-2)^{2}$. Find the coordinates $(x, y)$ of the point $P$ lying on this parabola between $x=0$ and $x=2$ such that the perimeter of the rectangle shown below is the smallest.

24. Let $f(x)=\frac{x+1}{(x-1)^{2}}$. Then $f^{\prime}(x)=-\frac{x+3}{(x-1)^{3}}, f^{\prime \prime}(x)=\frac{2(x+5)}{(x-1)^{4}}$.
(a) (4pts) Find vertical and horizontal asymptotes of the graph of $f(x)$, if there are any.
(b) (4pts) Find intervals on which $f(x)$ is increasing and intervals on which it is decreasing. Find critical numbers of $f(x)$, if there are any.
(c) (2pts) Find $x$-coordinates of local minima and local maxima of $f(x)$, if any exist.
(d) (4pts) Find intervals on which $f(x)$ is concave up and intervals on which it is concave down. Find $x$-coordinates of inflection points of the graph of $f(x)$, if there are any.
(e) (2pts) Find the minimum value of $f(x)$ on the interval $[2,5]$.
(f) (2pts) Sketch the graph of $f(x)$.

25. Evaluate the following integrals.
(a) $(5 \mathrm{pts}) \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} x \cos x d x$
(b) (5pts) $\int \frac{6 x+6 x^{2}}{\sqrt{3 x^{2}+2 x^{3}}} d x$
(c) $(5 \mathrm{pts}) \int\left(5 x^{\frac{2}{3}}+4 x\left(1-x^{2}\right)-\frac{2}{\sqrt[3]{x}}\right) d x$
26. In Lewis Carroll's book Alice's Adventures in Wonderland, there is a part where Alice falls down a well, but fortunately she slows down as she is falling. Suppose that our reference time point is such that at $t=0$ Alice is 25 ft above the bottom of the well. Assume also that her speed at that moment is $10 \mathrm{ft} / \mathrm{sec}$, and is decreasing at the rate of $2 \mathrm{ft} / \mathrm{sec}^{2}$ from that moment on.
(a) (4pts) Find the function that describes Alice's position at time $t$ for $t \geq 0$.
(b) (2pts) After how many seconds will Alice reach the bottom of the well?
(c) (2pts) What will Alice's speed be when she reaches the bottom?
27. Consider the function $f(x)=16-x^{2}$ pictured below.
(a) (6pts) Estimate $\int_{0}^{4} f(x) d x$ with a Riemann sum using four subintervals of equal width and left endpoints.

(b) (2pts) Sketch the rectangles that you used in part (a) on the provided graph.
(c) $(2 \mathrm{pts})$ Find the exact value of $\int_{0}^{4} f(x) d x$.
28. Consider the region $R$ bounded by the $x$-axis, the curve $y=\frac{4}{x^{2}}-1$, and the line $x=1$.

(a) $(6 \mathrm{pts})$ Find the area of the region $R$.
(b) (4pts) Set up but do not evaluate the integral that gives the volume of the solid obtained by revolving the region $R$ about the $x$-axis.
(c) (4pts) Set up but do not evaluate the integral that gives the volume of the solid obtained by revolving the region $R$ about the $y$-axis.
