ANALYSIS QUALIFYING EXAM - SEPTEMBER 2016

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, integration is with respect to Lebesgue measure.
- We denote the Lebesgue measure of a set A by $m(A)$.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) For each n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a continuous function, and assume that the sequence $\left(f_{n}\right)$ converges pointwise everywhere on $[0,1]$ to a limit function $f:[0,1] \rightarrow \mathbb{R}$.
(a) Give an example where the limit function is not continuous.
(b) Show from the definitions that the limit function is a Borel function.
(2) In this problem, let $0 \cdot \infty=0$, and let $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ be a non-negative, simple function.
(a) Show that

$$
\int_{\mathbb{R}^{d}} f(x) \mathrm{d} x=\sup \left\{\sum_{k=1}^{N} \inf \left\{f(x) \mid x \in E_{k}\right\} m\left(E_{k}\right)\right\}
$$

where the supremum is taken over all finite, disjoint families of measurable sets E_{1}, \ldots, E_{N}.
(b) Show that the equality still holds when the sets E_{k} are only allowed to be closed sets.
(c) Show that the equality does not hold when $d=1$ and the sets E_{k} are only allowed to be open sets. You may use standard facts about the existence of subsets of \mathbb{R} with certain properties as long as you state them clearly.
(3) Let $\left(a_{n}\right)$ be a decreasing sequence of positive real numbers so that

$$
\lim _{n \rightarrow \infty} a_{n}=0 \quad \text { and } \quad \sum_{n=1}^{\infty} a_{n} \log \left(\frac{1}{a_{n}}\right)<\infty
$$

Suppose $\left(b_{n}\right)$ is an arbitrary sequence of real numbers. Let

$$
f_{n}(x)= \begin{cases}\frac{a_{n}}{\left|x-b_{n}\right|} & a_{n} \leqslant\left|x-b_{n}\right| \\ 0 & \text { otherwise }\end{cases}
$$

and set $A_{n}=\left\{x \mid f_{n}(x)=0\right\}=\left(b_{n}-a_{n}, b_{n}+a_{n}\right)$.
(a) Show that $\sum_{n=1}^{\infty} m\left(A_{n}\right)<\infty$.
(b) Show that $m\left(\bigcap_{k=1}^{\infty} \bigcup_{n \geqslant k} A_{n}\right)=0$.
(c) For every $R>0$ show that $\int_{-R}^{R} \sum_{n=1}^{\infty} f_{n}(x) \mathrm{d} x<\infty$
(d) Show that $\sum_{n=1}^{\infty} \frac{a_{n}}{\left|x-b_{n}\right|}$ converges for almost every x in \mathbb{R}.
(4) For $f, g \in L^{1}\left(\mathbb{R}^{d}\right)$, let the convolution $f * g$ be defined as

$$
f * g(x)=\int_{\mathbb{R}^{d}} f(x-t) g(t) \mathrm{d} t
$$

Prove the following:
(a) $f * g \in L^{1}\left(\mathbb{R}^{d}\right)$. You may use without proof that the function $\mathbb{R}^{2 d} \rightarrow \mathbb{C}$ defined by $(x, t) \mapsto f(x-t) g(t)$ is measurable.
(b) If g is bounded, then $f * g$ is continuous.
(5) Let $p>q$ be fixed numbers in $[1, \infty)$. Let $C_{b}(\mathbb{R})$ denote the continuous, bounded, complex-valued, functions on \mathbb{R}. Which of the two inclusions

$$
C_{b}(\mathbb{R}) \cap L^{p}(\mathbb{R}) \subseteq L^{q}(\mathbb{R}) \quad \text { and } \quad C_{b}(\mathbb{R}) \cap L^{q}(\mathbb{R}) \subseteq L^{p}(\mathbb{R})
$$

is correct, and which is not? Prove the correct one, and give a counterexample to the false one.
(6) A function $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz if there is a constant $c \geqslant 0$ such that

$$
|f(x)-f(y)| \leqslant c|x-y|
$$

for all $x, y \in[0,1]$.
(a) Give an example of a Lipschitz function $f:[0,1] \rightarrow \mathbb{R}$ that is not differentiable at infinitely many points in $[0,1]$.
Partial credit for a good picture of the graph of an appropriate f, as long as it's clearly explained.
(b) Show that if $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz, then there is at least one point in $(0,1)$ where f is differentiable.

