ANALYSIS QUALIFYING EXAM - SEPTEMBER 2016

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, integration is with respect to Lebesgue measure.
- We denote the Lebesgue measure of a set A by m(A).
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
- (1) For each n, let $f_n : [0,1] \to \mathbb{R}$ be a continuous function, and assume that the sequence (f_n) converges pointwise everywhere on [0,1] to a limit function $f:[0,1] \to \mathbb{R}$.
 - (a) Give an example where the limit function is not continuous.
 - (b) Show from the definitions that the limit function is a Borel function.
- (2) In this problem, let $0 \cdot \infty = 0$, and let $f : \mathbb{R}^d \to [0, \infty)$ be a non-negative, simple function.
 - (a) Show that

$$\int_{\mathbb{R}^d} f(x) dx = \sup \left\{ \sum_{k=1}^N \inf \{ f(x) \mid x \in E_k \} m(E_k) \right\}$$

where the supremum is taken over all finite, disjoint families of measurable sets $E_1, ..., E_N$.

- (b) Show that the equality still holds when the sets E_k are only allowed to be closed sets.
- (c) Show that the equality does not hold when d=1 and the sets E_k are only allowed to be open sets. You may use standard facts about the existence of subsets of \mathbb{R} with certain properties as long as you state them clearly.

(3) Let (a_n) be a decreasing sequence of positive real numbers so that

$$\lim_{n \to \infty} a_n = 0 \quad \text{and} \quad \sum_{n=1}^{\infty} a_n \log(\frac{1}{a_n}) < \infty.$$

Suppose (b_n) is an arbitrary sequence of real numbers. Let

$$f_n(x) = \begin{cases} \frac{a_n}{|x-b_n|} & a_n \leq |x-b_n| \\ 0 & \text{otherwise} \end{cases}$$

and set $A_n = \{x \mid f_n(x) = 0\} = (b_n - a_n, b_n + a_n).$

- (a) Show that $\sum_{n=1}^{\infty} m(A_n) < \infty$.
- (b) Show that $m(\bigcap_{k=1}^{\infty} \bigcup_{n\geqslant k} A_n) = 0$.
- (c) For every R > 0 show that $\int_{-R}^{R} \sum_{n=1}^{\infty} f_n(x) dx < \infty$
- (d) Show that $\sum_{n=1}^{\infty} \frac{a_n}{|x-b_n|}$ converges for almost every x in \mathbb{R} .

(4) For $f, g \in L^1(\mathbb{R}^d)$, let the convolution f * g be defined as

$$f * g(x) = \int_{\mathbb{R}^d} f(x - t)g(t)dt.$$

Prove the following:

- (a) $f * g \in L^1(\mathbb{R}^d)$. You may use without proof that the function $\mathbb{R}^{2d} \to \mathbb{C}$ defined by $(x,t) \mapsto f(x-t)g(t)$ is measurable.
- (b) If g is bounded, then f * g is continuous.
- (5) Let p > q be fixed numbers in $[1, \infty)$. Let $C_b(\mathbb{R})$ denote the continuous, bounded, complex-valued, functions on \mathbb{R} . Which of the two inclusions

$$C_b(\mathbb{R}) \cap L^p(\mathbb{R}) \subseteq L^q(\mathbb{R})$$
 and $C_b(\mathbb{R}) \cap L^q(\mathbb{R}) \subseteq L^p(\mathbb{R})$

is correct, and which is not? Prove the correct one, and give a counter-example to the false one.

(6) A function $f:[0,1]\to\mathbb{R}$ is Lipschitz if there is a constant $c\geqslant 0$ such that

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in [0, 1]$.

- (a) Give an example of a Lipschitz function $f:[0,1] \to \mathbb{R}$ that is not differentiable at infinitely many points in [0,1].

 Partial credit for a good picture of the graph of an appropriate f, as long as it's clearly explained.
- (b) Show that if $f:[0,1] \to \mathbb{R}$ is Lipschitz, then there is at least one point in (0,1) where f is differentiable.