ANALYSIS QUALIFYING EXAM - October 2017

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, integration is with respect to Lebesgue measure, and $L^p(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^d with respect to Lebesgue measure.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
- (1) (a) Let B denote the unit ball $\{x \in \mathbb{R}^d \mid |x| \leq 1\}$ in \mathbb{R}^d . Give an example of a sequence (f_n) of continuous functions in $L^1(B)$ such that $||f_n||_1 \to 0$ but such that (f_n) does not tend to zero pointwise almost everywhere.
 - (b) Show that such an example does not exist if the sequence is additionally assumed to be equicontinuous (recall this means the for all $\epsilon > 0$ there exists $\delta > 0$ such that for all n, if $|x y| < \delta$ then $|f_n(x) f_n(y)| < \epsilon$).
- (2) Say (f_n) is a sequence in $L^1[0,1]$ converging to some $f \in L^1[0,1]$ pointwise almost everywhere. Assume moreover that $||f_n||_1 \to ||f||_1$ as $n \to \infty$, and show that $f_n \to f$ in $L^1[0,1]$.
- (3) Let $f: \mathbb{R} \to \mathbb{R}$ be integrable. Assume that there exists $\epsilon > 0$ such that $|\int_A f| \leq m(A)^{1+\epsilon}$ for all measurable sets $A \subseteq \mathbb{R}$. Show that f equals zero almost everywhere.

(4) Fix $p, q \in [1, \infty)$. Let X be the vector space of measurable functions $f: [0, \infty) \to \mathbb{R}$ such that the norm defined by

$$||f|| := ||f|_{[0,1]}||_p + ||f|_{[1,\infty)}||_q$$

is finite, where $\|\cdot\|_p$ and $\|\cdot\|_q$ are the norms on $L^p[0,1]$ and $L^q[1,\infty)$ respectively and $f|_S$ denotes the restriction of f to a set S.

- (a) Show that $(X, \|\cdot\|)$ is complete. You may use without proof that standard L^p spaces are complete.
- (b) Under what conditions (if any) on p and q is X contained in $L^p[0,\infty)$, and under what conditions is it contained in $L^q[0,\infty)$? Justify your answers.
- (5) For a function $f: \mathbb{R} \to \mathbb{R}$ and $h \in \mathbb{R}$, let $\tau_h f$ be defined by $\tau_h f(x) = f(x+h)$.
 - (a) Give an example of an integrable function $f: \mathbb{R} \to \mathbb{R}$ such that $\lim_{h\to 0} \tau_h f(x)$ does not exist for any $x \in \mathbb{R}$.
 - (b) Show that for any $f \in L^1(\mathbb{R})$, $\lim_{h\to 0} \|\tau_h f f\|_1 = 0$.
- (6) For measurable functions $f, g : \mathbb{R} \to \mathbb{C}$, provisionally define the convolution f * g by

$$(f * g)(x) := \int_{\mathbb{R}} f(y)g(x - y)dy.$$

You may assume without proof that the integrand above is measurable.

- (a) Show that if $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then $f * g \in L^{\infty}(\mathbb{R})$ and $||f * g||_{\infty} \leq ||f||_1 ||g||_{\infty}$.
- (b) Show that if $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ for $p \in [1, \infty)$, then $f * g \in L^p(\mathbb{R})$ and $||f * g||_p \le ||f||_1 ||g||_p$.