ANALYSIS QUALIFYING EXAM - AUGUST 2018

Attempt the following six problems. Please note the following:

- Throughout this exam, $L_{p}(E)$ denotes the Lebesgue space of a measure space E. Measure and integration on \mathbb{R}^{d} use Lebesgue measure unless otherwise stated.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) Suppose (E, Σ, μ) is a measure space and $\|g\|_{L_{1}(E)} \neq 0$. Prove that if $f: E \rightarrow \mathbb{C}$ is Σ measurable, then

$$
\frac{\left|\int_{E} f(x) \mathrm{d} \mu(x)\right|^{2}}{\int_{E}|g(x)| \mathrm{d} \mu(x)} \leq \int_{E} \frac{|f(x)|^{2}}{|g(x)|} \mathrm{d} \mu(x) .
$$

(2) Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n}{x\left(1+x^{2}\right)} \sin \left(\frac{x}{n}\right) \mathrm{d} x .
$$

Justify your answer.
(3) Let $f \in L_{2}[0,1]$ be a function such that $\int_{0}^{1} x^{n} f(x) \mathrm{d} x=0$ for all integers $n \geq 0$. Show that f is zero almost everywhere.
(4) Let $\left(r_{n}\right)$ be an enumeration of the rationals and set $A_{n}=\left(r_{n}, r_{n}+n^{-3}\right)$. Let

$$
f=\sum_{n=1}^{\infty} n \chi_{A_{n}}
$$

(a) Show that f is finite almost everywhere.
(b) Show that $f \notin L_{2}(\mathbb{R})$.
(c) Is f in $L_{2}[0,1]$? There are three possible answers: "yes", "no", or "depends on the given enumeration of the rationals". Say which holds, and justify your answer.
(5) Let (X, Σ, μ) be a finite measure space, Υ a sub- σ-algebra of Σ, and $\nu=\left.\mu\right|_{r}$. If $f \in L_{1}(\mu)$, show that there is $g \in L_{1}(\nu)$ so that $\int_{Y} f \mathrm{~d} \mu=\int_{Y} g \mathrm{~d} \nu$ for all $Y \in \Upsilon$. Make sure you justify why the hypotheses of any theorem you use are satisfied. Also, explain why it may not suffice to simply take $g=f$.
(6) For a Lebesgue measurable subset $A \subset[0,1] \times[0,1]$, define the slice at x by

$$
A_{1}(x)=\{y \in[0,1] \mid(x, y) \in A\}
$$

and the slice at y by

$$
A_{2}(y)=\{x \in[0,1] \mid(x, y) \in A\} .
$$

(a) Let μ be Lebesgue measure on $[0,1]$. Explain why

$$
\int_{0}^{1} \mu\left(A_{1}(x)\right) \mathrm{d} \mu(x)=\int_{0}^{1} \mu\left(A_{2}(y)\right) \mathrm{d} \mu(y) .
$$

(b) Let ν be the counting measure on $[0,1]$ (i.e., ν is defined on the σ-algebra of all subsets of $[0,1]$ by setting $\nu(E)$ to be the cardinality of E if this is finite, and ∞ if E is infinite). Does the identity

$$
\int_{0}^{1} \mu\left(A_{1}(x)\right) \mathrm{d} \nu(x)=\int_{0}^{1} \nu\left(A_{2}(y)\right) \mathrm{d} \mu(y)
$$

necessarily hold? Either prove it or provide a counter-example.

