ANALYSIS QUALIFYING EXAM - AUGUST 2018

Attempt the following six problems. Please note the following:

- Throughout this exam, $L_p(E)$ denotes the Lebesgue space of a measure space E. Measure and integration on \mathbb{R}^d use Lebesgue measure unless otherwise stated.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
- (1) Suppose (E, Σ, μ) is a measure space and $||g||_{L_1(E)} \neq 0$. Prove that if $f: E \to \mathbb{C}$ is Σ measurable, then

$$\frac{|\int_E f(x)d\mu(x)|^2}{\int_E |g(x)|d\mu(x)|} \le \int_E \frac{|f(x)|^2}{|g(x)|} d\mu(x).$$

(2) Compute the limit

$$\lim_{n \to \infty} \int_0^\infty \frac{n}{x(1+x^2)} \sin\left(\frac{x}{n}\right) dx.$$

Justify your answer.

(3) Let $f \in L_2[0,1]$ be a function such that $\int_0^1 x^n f(x) dx = 0$ for all integers $n \ge 0$. Show that f is zero almost everywhere.

- 2
- (4) Let (r_n) be an enumeration of the rationals and set $A_n = (r_n, r_n + n^{-3})$. Let

$$f = \sum_{n=1}^{\infty} n \chi_{A_n}.$$

- (a) Show that f is finite almost everywhere.
- (b) Show that $f \notin L_2(\mathbb{R})$.
- (c) Is f in $L_2[0,1]$? There are three possible answers: "yes", "no", or "depends on the given enumeration of the rationals". Say which holds, and justify your answer.
- (5) Let (X, Σ, μ) be a finite measure space, Υ a sub- σ -algebra of Σ , and $\nu = \mu|_{\Upsilon}$. If $f \in L_1(\mu)$, show that there is $g \in L_1(\nu)$ so that $\int_Y f d\mu = \int_Y g d\nu$ for all $Y \in \Upsilon$. Make sure you justify why the hypotheses of any theorem you use are satisfied. Also, explain why it may not suffice to simply take g = f.
- (6) For a Lebesgue measurable subset $A \subset [0,1] \times [0,1]$, define the slice at x by

$$A_1(x) = \{ y \in [0,1] \mid (x,y) \in A \}$$

and the slice at y by

$$A_2(y) = \{x \in [0,1] \mid (x,y) \in A\}.$$

(a) Let μ be Lebesgue measure on [0, 1]. Explain why

$$\int_0^1 \mu(A_1(x)) d\mu(x) = \int_0^1 \mu(A_2(y)) d\mu(y).$$

(b) Let ν be the counting measure on [0,1] (i.e., ν is defined on the σ -algebra of all subsets of [0,1] by setting $\nu(E)$ to be the cardinality of E if this is finite, and ∞ if E is infinite). Does the identity

$$\int_0^1 \mu(A_1(x)) d\nu(x) = \int_0^1 \nu(A_2(y)) d\mu(y)$$

necessarily hold? Either prove it or provide a counter-example.