ANALYSIS QUALIFYING EXAM, FALL 2020 - Throughout this exam, a measure space denotes a triple (X, \mathcal{S}, μ) where X is a set, \mathcal{S} is a σ -algebra on X, and μ is a (positive) measure on (X, \mathcal{S}) . - Partial credit will be given for partially correct solutions, even if incomplete. - The parts of problems are not equally difficult, and will not be weighted equally. - Good luck! ### Problem 1 Let (X, \mathcal{S}, μ) be a measure space, and let $f: X \to [-\infty, \infty]$ be measurable. **a.** Show that for every $0 < M < \infty$, we have $$\mu(\{x \in X : |f(x)| \ge M\}) \le \frac{1}{M} \int_X |f| \, d\mu.$$ **b.** Let $f_n: X \to \mathbb{R}$ be a sequence of measurable functions on (X, \mathcal{S}, μ) . We say that (f_n) converges in measure to a measurable function $f: X \to \mathbb{R}$ if for every $\epsilon > 0$, $$\mu(\lbrace x \in X : |f_n(x) - f(x)| \ge \epsilon \rbrace) \to 0 \qquad (n \to \infty).$$ Show that if $||f_n - f||_1 \to 0$ as $n \to \infty$, then $f_n \to f$ in measure. ## Problem 2 Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2$, and let $\mathcal{S} := \{A \in \mathcal{B}(\mathbb{R}) : A = -A\}$. Here $\mathcal{B}(\mathbb{R})$ is the σ -algebra of Borel subsets of \mathbb{R} , and -A denotes the set $\{-a : a \in A\}$. - **a.** Show that S is a σ -algebra on \mathbb{R} . - **b.** Show that f is S-measurable. **c.** Show that if S' is another σ -algebra on \mathbb{R} for which f is S'-measurable, then $S \subset S'$. #### Problem 3 Let $a := (a_n)_{n \ge 1}$ be a sequence of numbers in (0, 1/2). We let $C_0 := [0, 1]$, and construct C_n for $n \ge 1$ inductively as follows: Suppose that C_{n-1} is a union of disjoint closed intervals each of length l. Then we construct C_n by removing, in the middle of each interval of C_{n-1} , an open interval of length $l(1-2a_n)$. We define $C=C(a):=\cap_{n\geq 1}C_n$, the Cantor set corresponding to the sequence a. - **a.** Explain why C is compact and non-empty. - **b.** Show that C does not contain any open interval. - **c.** What is the Lebesgue measure of C in terms of the sequence a? #### Problem 4 Let (X, \mathcal{S}, μ) be a measure space, and let $f, f_n : X \to [0, \infty]$ be measurable functions such that $$\lim_{n \to \infty} f_n(x) = f(x) \qquad (x \in X)$$ and $$\lim_{n\to\infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$ Show that if $\int_X f d\mu < \infty$, then for each $E \in \mathcal{S}$, we have $$\lim_{n \to \infty} \int_E f_n \, d\mu = \int_E f \, d\mu.$$ ### Problem 5 Consider the function $f(x,y) := 2e^{-2xy} - e^{-xy}$ defined on $[0,\infty) \times [0,1]$. **a.** Show that $$\int_0^1 \int_0^\infty f(x,y) \, dx \, dy = 0.$$ **b.** Show that $$\int_0^\infty \int_0^1 f(x,y) \, dy \, dx = \log 2.$$ *Hint*: Use the identity $$\frac{e^{-x} - e^{-2x}}{x} = \int_{1}^{2} e^{-xy} \, dy.$$ **c.** Is |f| integrable on $[0,\infty)\times[0,1]$? Explain. # Problem 6 Show that there is no measurable set $E \subset \mathbb{R}$ that satisfies $$\frac{1}{100} < \frac{m(E \cap I)}{m(I)} < \frac{99}{100}$$ for every interval $I \subset \mathbb{R}$, where m denotes the Lebesgue measure on \mathbb{R} .