ANALYSIS QUALIFYING EXAM, FALL 2020

- Throughout this exam, a measure space denotes a triple (X, \mathcal{S}, μ) where X is a set, \mathcal{S} is a σ-algebra on X, and μ is a (positive) measure on (X, \mathcal{S}).
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1

Let (X, \mathcal{S}, μ) be a measure space, and let $f: X \rightarrow[-\infty, \infty]$ be measurable.
a. Show that for every $0<M<\infty$, we have

$$
\mu(\{x \in X:|f(x)| \geq M\}) \leq \frac{1}{M} \int_{X}|f| d \mu .
$$

b. Let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions on (X, \mathcal{S}, μ). We say that $\left(f_{n}\right)$ converges in measure to a measurable function $f: X \rightarrow \mathbb{R}$ if for every $\epsilon>0$,

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Show that if $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$, then $f_{n} \rightarrow f$ in measure.

Problem 2

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x):=x^{2}$, and let $\mathcal{S}:=\{A \in \mathcal{B}(\mathbb{R}): A=-A\}$. Here $\mathcal{B}(\mathbb{R})$ is the σ-algebra of Borel subsets of \mathbb{R}, and $-A$ denotes the set $\{-a: a \in A\}$.
a. Show that \mathcal{S} is a σ-algebra on \mathbb{R}.
b. Show that f is \mathcal{S}-measurable.
c. Show that if \mathcal{S}^{\prime} is another σ-algebra on \mathbb{R} for which f is \mathcal{S}^{\prime}-measurable, then $\mathcal{S} \subset \mathcal{S}^{\prime}$.

Problem 3

Let $a:=\left(a_{n}\right)_{n \geq 1}$ be a sequence of numbers in $(0,1 / 2)$. We let $C_{0}:=[0,1]$, and construct C_{n} for $n \geq 1$ inductively as follows:

Suppose that C_{n-1} is a union of disjoint closed intervals each of length l. Then we construct C_{n} by removing, in the middle of each interval of C_{n-1}, an open interval of length $l\left(1-2 a_{n}\right)$. We define $C=C(a):=\cap_{n \geq 1} C_{n}$, the Cantor set corresponding to the sequence a.
a. Explain why C is compact and non-empty.
b. Show that C does not contain any open interval.
c. What is the Lebesgue measure of C in terms of the sequence a ?

Problem 4

Let (X, \mathcal{S}, μ) be a measure space, and let $f, f_{n}: X \rightarrow[0, \infty]$ be measurable functions such that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad(x \in X)
$$

and

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Show that if $\int_{X} f d \mu<\infty$, then for each $E \in \mathcal{S}$, we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Problem 5

Consider the function $f(x, y):=2 e^{-2 x y}-e^{-x y}$ defined on $[0, \infty) \times[0,1]$.
a. Show that

$$
\int_{0}^{1} \int_{0}^{\infty} f(x, y) d x d y=0
$$

b. Show that

$$
\int_{0}^{\infty} \int_{0}^{1} f(x, y) d y d x=\log 2
$$

Hint: Use the identity

$$
\frac{e^{-x}-e^{-2 x}}{x}=\int_{1}^{2} e^{-x y} d y
$$

c. Is $|f|$ integrable on $[0, \infty) \times[0,1]$? Explain.

Problem 6

Show that there is no measurable set $E \subset \mathbb{R}$ that satisfies

$$
\frac{1}{100}<\frac{m(E \cap I)}{m(I)}<\frac{99}{100}
$$

for every interval $I \subset \mathbb{R}$, where m denotes the Lebesgue measure on \mathbb{R}.

