ANALYSIS QUALIFYING EXAM - AUGUST 2021

Attempt the following problems. Please note the following:

- Throughout this exam, unless otherwise indicated, m denotes the Lebesgue measure in \mathbb{R}^d , integration is with respect to m, and $L_p(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^d with respect to m and $p \in [1, \infty]$.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
- (1) For the following statements, say if they are true or false, and give a proof or counterexample as appropriate.
 - (a) An open subset of [0, 1] which is dense has Lebesgue measure one.
 - (b) An open subset of [0, 1] which has Lebesgue measure one is dense.
- (2) Let (f_n) be a sequence of continuous functions from (0,1) to \mathbb{R} . Say (f_n) satisfies condition (D) if the following two conditions are satisfied:
 - (D_1) (f_n) converges uniformly to a function $f:(0,1)\to\mathbb{R}$;
 - (D_2) each f_n is differentiable with $|f'_n(x)| \leq 1$ for all $x \in (0,1)$.
 - (a) Give an example of a sequence satisfying condition (D) such that the limit function f is not differentiable.
 - (b) Show that for any sequence (f_n) satisfying condition (D), the limit function f is absolutely continuous.

- 2
- (3) Let \mathcal{B} denote the σ -algebra of Borel subsets of \mathbb{R} , and let $\nu : \mathcal{B} \to [0, \infty)$ be a measure (note that $\nu(\mathbb{R}) < \infty$). For $t \in \mathbb{R}$ define

$$f(t) := \int_{\mathbb{R}} \cos(tx) d\nu(x).$$

- (a) Show that f is well-defined, bounded and continuous.
- (b) Prove the following version of the Riemann-Lebesgue lemma: if ν as above is absolutely continuous with respect to Lebesgue measure, then $\lim_{t\to\infty}f(t)=0$.
- (c) Give an example of a measure $\nu: \mathcal{B} \to [0, \infty)$ for which $\lim_{t \to \infty} f(t) \neq 0$.
- (4) (a) Suppose $1 \leq p \leq q \leq \infty$. Show that if $f \in L_p(\mathbb{R}) \cap L_q(\mathbb{R})$ then $f \in L_r(\mathbb{R})$ for all $r \in [p, q]$.
 - (b) Determine whether the following statement is true. "If f is integrable and continuous then $f \in L_p(\mathbb{R})$ for some $p \in (1, \infty]$." Support your answer with a proof or a counterexample.
- (5) Suppose $g:(0,\infty)\to\mathbb{R}$ is a nonzero, continuous function. Show that $G:[0,1]\times[1,\infty)\to\mathbb{R}$ defined by

$$G(x,y) = g(xy)$$

is not in $L_1([0,1] \times [1,\infty))$.

(6) Show that for any positive real numbers r and s,

$$\int_0^1 \frac{x^{r-1}}{1+x^s} = \sum_{n=0}^\infty \frac{(-1)^n}{r+ns}.$$

Make sure you properly cite any convergence results used in your response.