ANALYSIS QUALIFYING EXAM - AUGUST 2021

Attempt the following problems. Please note the following:

- Throughout this exam, unless otherwise indicated, m denotes the Lebesgue measure in \mathbb{R}^{d}, integration is with respect to m, and $L_{p}(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^{d} with respect to m and $p \in[1, \infty]$.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) For the following statements, say if they are true or false, and give a proof or counterexample as appropriate.
(a) An open subset of $[0,1]$ which is dense has Lebesgue measure one.
(b) An open subset of $[0,1]$ which has Lebesgue measure one is dense.
(2) Let $\left(f_{n}\right)$ be a sequence of continuous functions from $(0,1)$ to \mathbb{R}. Say $\left(f_{n}\right)$ satisfies condition (D) if the following two conditions are satisfied:
$\left(D_{1}\right)\left(f_{n}\right)$ converges uniformly to a function $f:(0,1) \rightarrow \mathbb{R}$;
$\left(D_{2}\right)$ each f_{n} is differentiable with $\left|f_{n}^{\prime}(x)\right| \leq 1$ for all $x \in(0,1)$.
(a) Give an example of a sequence satisfying condition (D) such that the limit function f is not differentiable.
(b) Show that for any sequence $\left(f_{n}\right)$ satisfying condition (D), the limit function f is absolutely continuous.
(3) Let \mathcal{B} denote the σ-algebra of Borel subsets of \mathbb{R}, and let $\nu: \mathcal{B} \rightarrow[0, \infty)$ be a measure (note that $\nu(\mathbb{R})<\infty$). For $t \in \mathbb{R}$ define

$$
f(t):=\int_{\mathbb{R}} \cos (t x) \mathrm{d} \nu(x)
$$

(a) Show that f is well-defined, bounded and continuous.
(b) Prove the following version of the Riemann-Lebesgue lemma: if ν as above is absolutely continuous with respect to Lebesgue measure, then $\lim _{t \rightarrow \infty} f(t)=0$.
(c) Give an example of a measure $\nu: \mathcal{B} \rightarrow[0, \infty)$ for which $\lim _{t \rightarrow \infty} f(t) \neq 0$.
(4) (a) Suppose $1 \leq p \leq q \leq \infty$. Show that if $f \in L_{p}(\mathbb{R}) \cap L_{q}(\mathbb{R})$ then $f \in L_{r}(\mathbb{R})$ for all $r \in[p, q]$.
(b) Determine whether the following statement is true.
"If f is integrable and continuous then $f \in L_{p}(\mathbb{R})$ for some $p \in(1, \infty]$."
Support your answer with a proof or a counterexample.
(5) Suppose $g:(0, \infty) \rightarrow \mathbb{R}$ is a nonzero, continuous function. Show that $G:[0,1] \times[1, \infty) \rightarrow \mathbb{R}$ defined by

$$
G(x, y)=g(x y)
$$

is not in $L_{1}([0,1] \times[1, \infty))$.
(6) Show that for any positive real numbers r and s,

$$
\int_{0}^{1} \frac{x^{r-1}}{1+x^{s}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{r+n s}
$$

Make sure you properly cite any convergence results used in your response.

