ANALYSIS QUALIFYING EXAM, FALL 2022

- Throughout this exam (X, μ) denotes an arbitrary measure space, and $L^p(\mu)$ the corresponding Lebesgue space. Also, m denotes the Lebesgue measure in \mathbb{R}^d , and $L^p(E)$ denotes the Lebesgue space (real-valued functions) of a subset E of \mathbb{R}^d with respect to m.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1. Give a proof or a counterexample to each of the following statements.

- **a.** Any subset of [0,1] with measure one is dense.
- **b**. Any subset of [0,1] with measure one contains an open interval.
- **c**. If $E, F \subseteq [0,1]$ both have measure one, then $E \times F \subseteq [0,1] \times [0,1]$ also has measure one.
- **d.** If $E \subseteq [0,1] \times [0,1]$ has measure one, then the "slice" $E_0 := \{x \in [0,1] \mid (x,0) \in E\}$ has measure one.
- **e.** There exists an open, dense subset of [0,1] with measure less than 1/2.

Problem 2. Let (X, μ) be a finite measure space. Show that

$$\lim_{n \to \infty} \int_X \frac{|f_n - f|}{1 + |f_n - f|} \, d\mu = 0$$

if and only if $f_n \to f$ in measure as $n \to \infty$.

Problem 3. For a (real-valued) function f on \mathbb{R} define

$$f^y(x) = f(x - y), \qquad y \in \mathbb{R}.$$

- **a.** Show that if $f \in L^p(\mathbb{R})$ for some $1 \leq p < \infty$ then $||f^y f||_p \to 0$ as $y \to 0$.
- **b.** Give an example of an $f \in L^{\infty}(\mathbb{R})$ such that $||f^y f||_{\infty} \to 0$ as $y \to 0$.

Problem 4.

a. A version of Egorov's theorem states that if (X, μ) is a finite measure space and $(f_n : X \to \mathbb{R})$ is a sequence of measurable functions that converge pointwise to a function $f : X \to \mathbb{R}$, then for any $\epsilon > 0$ there exists a measurable subset E of X such that $\mu(X \setminus E) < \epsilon$ and (f_n) converges uniformly to f on E.

Is this true without the hypothesis that $\mu(X) < \infty$? Deduce the version where X has infinite measure from the version above, or give a counterexample.

b. A version of Luzin's theorem states that if $f:[a,b] \to \mathbb{R}$ is a measurable function for some $a,b \in \mathbb{R}$, then for any $\epsilon > 0$ there exists a closed subset F of [a,b] such that $\mu([a,b] \setminus F) < \epsilon$ and the restriction $f|_F: F \to \mathbb{R}$ is continuous.

Is this true if we replace [a, b] by \mathbb{R} ? Deduce the version with [a, b] replaced by \mathbb{R} from the version above, or give a counterexample.

Problem 5. Let (X, μ) be a σ -finite measure space, and let K(x, y) be a function of two variables that is measurable with respect to the product σ -algebra. Assume there is a constant C such that

$$\int_X |K(x,y)| d\mu(y) \le C, \quad \text{for a.e. } x \in X$$

and

$$\int_X |K(x,y)| d\mu(x) \le C, \qquad \text{for a.e. } y \in X.$$

For $1 \le p \le \infty$ define

$$Tf(x) = \int_X K(x, y) f(y) d\mu(y).$$

Show that $||T(f)||_p \leq C||f||_p$. Make sure you state explicitly where the σ -finiteness assumption is used.

Problem 6.

a. Let (X, μ) be \mathbb{N} with counting measure. Show that if $1 \leq p \leq q \leq \infty$, then $L^p(X) \subseteq L^q(X)$.

b. Let (X, μ) be a finite measure space with Lebesgue measure. Show that if $1 \le p \le q \le \infty$, then $L^q(X) \subseteq L^p(X)$.

c. Let $X = [0, 1] \times [0, 1]$, equipped with Lebesgue measure. Give an example of a function $f \in L^1(X)$ that is not in $L^p(X)$ for any p > 1.

Note: your function f should work for all p at once! It is not enough to prove "for all p there exists $f \in L^1(X)$ that is not in $L^p(X)$ ".