ANALYSIS QUALIFYING EXAM, FALL 2022

- Throughout this exam (X, μ) denotes an arbitrary measure space, and $L^{p}(\mu)$ the corresponding Lebesgue space. Also, m denotes the Lebesgue measure in \mathbb{R}^{d}, and $L^{p}(E)$ denotes the Lebesgue space (real-valued functions) of a subset E of \mathbb{R}^{d} with respect to m.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1. Give a proof or a counterexample to each of the following statements.
a. Any subset of $[0,1]$ with measure one is dense.
b. Any subset of $[0,1]$ with measure one contains an open interval.
c. If $E, F \subseteq[0,1]$ both have measure one, then $E \times F \subseteq[0,1] \times[0,1]$ also has measure one.
d. If $E \subseteq[0,1] \times[0,1]$ has measure one, then the "slice" $E_{0}:=\{x \in[0,1] \mid$ $(x, 0) \in E\}$ has measure one.
e. There exists an open, dense subset of $[0,1]$ with measure less than $1 / 2$.

Problem 2. Let (X, μ) be a finite measure space. Show that

$$
\lim _{n \rightarrow \infty} \int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0
$$

if and only if $f_{n} \rightarrow f$ in measure as $n \rightarrow \infty$.

Problem 3. For a (real-valued) function f on \mathbb{R} define

$$
f^{y}(x)=f(x-y), \quad y \in \mathbb{R} .
$$

a. Show that if $f \in L^{p}(\mathbb{R})$ for some $1 \leq p<\infty$ then $\left\|f^{y}-f\right\|_{p} \rightarrow 0$ as $y \rightarrow 0$.
b. Give an example of an $f \in L^{\infty}(\mathbb{R})$ such that $\left\|f^{y}-f\right\|_{\infty} \nrightarrow 0$ as $y \rightarrow 0$.

Problem 4.

a. A version of Egorov's theorem states that if (X, μ) is a finite measure space and $\left(f_{n}: X \rightarrow \mathbb{R}\right)$ is a sequence of measurable functions that converge pointwise to a function $f: X \rightarrow \mathbb{R}$, then for any $\epsilon>0$ there exists a measurable subset E of X such that $\mu(X \backslash E)<\epsilon$ and $\left(f_{n}\right)$ converges uniformly to f on E.

Is this true without the hypothesis that $\mu(X)<\infty$? Deduce the version where X has infinite measure from the version above, or give a counterexample.
b. A version of Luzin's theorem states that if $f:[a, b] \rightarrow \mathbb{R}$ is a measurable function for some $a, b \in \mathbb{R}$, then for any $\epsilon>0$ there exists a closed subset F of $[a, b]$ such that $\mu([a, b] \backslash F)<\epsilon$ and the restriction $\left.f\right|_{F}: F \rightarrow \mathbb{R}$ is continuous.

Is this true if we replace $[a, b]$ by \mathbb{R} ? Deduce the version with $[a, b]$ replaced by \mathbb{R} from the version above, or give a counterexample.

Problem 5. Let (X, μ) be a σ-finite measure space, and let $K(x, y)$ be a function of two variables that is measurable with respect to the product σ-algebra. Assume there is a constant C such that

$$
\int_{X}|K(x, y)| d \mu(y) \leq C, \quad \text { for a.e. } x \in X
$$

and

$$
\int_{X}|K(x, y)| d \mu(x) \leq C, \quad \text { for a.e. } y \in X
$$

For $1 \leq p \leq \infty$ define

$$
T f(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

Show that $\|T(f)\|_{p} \leq C\|f\|_{p}$. Make sure you state explicitly where the σ finiteness assumption is used.

Problem 6.

a. Let (X, μ) be \mathbb{N} with counting measure. Show that if $1 \leq p \leq q \leq \infty$, then $L^{p}(X) \subseteq L^{q}(X)$.
b. Let (X, μ) be a finite measure space with Lebesgue measure. Show that if $1 \leq p \leq q \leq \infty$, then $L^{q}(X) \subseteq L^{p}(X)$.
c. Let $X=[0,1] \times[0,1]$, equipped with Lebesgue measure. Give an example of a function $f \in L^{1}(X)$ that is not in $L^{p}(X)$ for any $p>1$.
Note: your function f should work for all p at once! It is not enough to prove "for all p there exists $f \in L^{1}(X)$ that is not in $L^{p}(X)$ ".

