ANALYSIS QUALIFYING EXAM - AUGUST 2023

Attempt the following six problems. Please note the following:

- Throughout this exam, $L^p(X)$ denotes the L^p -space of a measure space (X, \mathcal{M}, μ) with the associated norm of a function being $||f||_p$. Subsets of \mathbb{R}^d are equipped with the Lebesgue sigma algebra and Lebesgue measure m_d unless otherwise stated.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

- 2
- (1) Prove the following statement, or give a (justified) counterexample: "for every Borel measurable function $f:[0,1] \to \mathbb{R}$ there is a continuous function $g:[0,1] \to \mathbb{R}$ such that f equals g almost everywhere".
- (2) Let $\{A_n\}$ be a sequence of disjoint measurable subsets of [0,1] whose union is [0,1], and let B_n be a sequence of measurable subsets of [0,1] such that

$$\lim_{n\to\infty} m(B_n \cap A_k) = 0$$

for each k. Prove that

$$\lim_{n\to\infty} m(B_n) = 0.$$

- (3) For this problem, assume that \mathbb{N} includes 0.
 - (a) Let $f \in L^2[-1,1]$, and for $n \in \mathbb{N}$, let $p_n(x) = x^n$. Show that if $\int_{[-1,1]} f p_n = 0$ for all n, then f = 0 almost everywhere.
 - (b) Give an example of $f \in L^2[-1,1]$ such that $\int_{[-1,1]} f p_n = 0$ for all $n \in 2\mathbb{N} = \{2n \mid n \in \mathbb{N}\}$, but f is not equal to zero almost everywhere. Justify your answer.
- (4) Let $(a_{n,m})_{n,m\in\mathbb{N}}$ be a collection of real numbers, indexed by pairs $(n,m)\in\mathbb{N}^2$ of non-negative integers.
 - (a) Using a result from integration theory justify the fact that if $a_{n,m} \geq 0$ for all n, m, we have that

$$\sum_{n \in \mathbb{N}} \left(\sum_{m \in \mathbb{N}} a_{n,m} \right) = \sum_{m \in \mathbb{N}} \left(\sum_{n \in \mathbb{N}} a_{n,m} \right)$$

(this includes the case that both sides are equal to infinity).

(b) Give an example of a collection $(a_{n,m})_{n,m\in\mathbb{N}}$ of real numbers such that both

$$\sum_{n \in \mathbb{N}} \left(\sum_{m \in \mathbb{N}} a_{n,m} \right) \quad \text{and} \quad \sum_{m \in \mathbb{N}} \left(\sum_{n \in \mathbb{N}} a_{n,m} \right)$$

converge, but the two are not equal.

Hint: there is an example such that $a_{n,m} = 0$ unless n = m or n = m + 1.

(c) Explain why your solution to the previous problem does not contradict Fubini's theorem.

- (5) Suppose $A \subset \mathbb{R}$ satisfies $m_1(A) = 0$, where m_1 denotes the usual Lebesgue measure on \mathbb{R} . Suppose $f : \mathbb{R} \to \mathbb{R}^2$ satisfies $|f(x) f(y)| \le \sqrt{|x y|}$ for every x, $y \in \mathbb{R}$ (here $|\cdot|$ denotes the usual Euclidean norm on \mathbb{R}^2 or \mathbb{R} as appropriate). Show that $m_2(f(A)) = 0$, where m_2 denotes the usual Lebesgue measure on \mathbb{R}^2 .
- (6) Let (X, \mathcal{M}, μ) be a measure space and let f be a measurable function on X. Prove that the (possibly infinite) limit

$$\lim_{n\to\infty} \int |f|^{1/n} \ d\mu$$

exists and find it in terms of f.