QUALIFYING EXAM - APRIL 2016

Attempt the following six problems. Please note the following:

- Throughout the exam, unless indicated otherwise, integration is with respect to Lebesgue measure.
- We denote the Lebesgue measure of a set A by $m(A)$.
(1) Let X be a nonempty set, let $\mathcal{P}(X)$ denote its power set and let $\mu: \mathcal{P}(X) \rightarrow[0, \infty]$ be the "counting measure" (i.e., $\mu(A)=\# A$ if $A \subset X$ is a finite set, and $\mu(A)=\infty$ otherwise). It is known that $(X, \mathcal{P}(X), \mu)$ is a measure space (you don't have to show this). Suppose $\int_{X}|f(x)| \mathrm{d} \mu(x)<\infty$. Show that f has countable support.
(2) For $f \in C([0,1])$, prove that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} e^{-n x} f(x) \mathrm{d} x
$$

exists and find the limit.
(3) In this problem, let a rectangle in \mathbb{R}^{2} be a set of the form $[a, b] \times[c, d]$. For a subset $E \subset \mathbb{R}^{2}$ and $t \in \mathbb{R}^{2}$, define $E+t=\{e+t \mid e \in E\}$.
(a) Consider the statement

For any measurable subset $E \subset \mathbb{R}^{2}$ and for any $\epsilon>0$ there
exists a finite union of rectangles $Q=\bigcup_{k=1}^{N}\left(\left[a_{k}, b_{k}\right] \times\left[c_{k}, d_{k}\right]\right)$
so that

- $E \subset Q$
- $m(Q \backslash E)<\epsilon$.

Give a simple proof (if true) or a simple counterexample (if false).
(b) Suppose E is a measurable subset of \mathbb{R}^{2} having finite measure. Show that if $\lim _{t \rightarrow 0} m(E \cap(E+t))=0$ then $m(E)=0$.
(4) In this problem, let B_{R} denote the ball of radius R in $\mathbb{R}^{2}: B_{R}=\{x| | x \mid<R\}$ Let f and g be measurable functions on \mathbb{R}^{2} satisfying the following: there exists a constant $C>0$ so that for every $r>0$,

$$
\int_{B_{2 r} \backslash B_{r}}|f(x)|^{3} \mathrm{~d} x<C r^{1} \quad \text { and } \quad \int_{B_{2 r} \backslash B_{r}}|g(x)|^{4} \mathrm{~d} x<C r^{-7}
$$

(a) Is $f \in L_{1}\left(B_{1}\right)$? Either prove it, or provide a counterexample.
(b) Is $g \in L_{1}\left(B_{1}\right)$? Either prove it, or provide a counterexample.
(c) Suppose, in addition to the above hypotheses, that f and g are continuous. Show that $f g \in L_{1}\left(\mathbb{R}^{2}\right)$.
(5) Let $\left(f_{n}\right)$ be a sequence of integrable functions satisfying

$$
\int_{\mathbb{R}}\left|f_{n}(x)\right| \mathrm{d} x \leq 2^{-n}
$$

for all $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ almost everywhere.
(6) Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be an integrable function for which there exists a compact set $K \subset \mathbb{R}$ so that $F(x)=0$ for almost every $x \in \mathbb{R} \backslash K$. For a continuous function ϕ, define the convolution $F * \phi$ as $F * \phi(x)=\int_{\mathbb{R}} F(x-y) \phi(y) \mathrm{d} y$.
(a) Prove that if ϕ is absolutely continuous, then $\frac{d}{d x}(F * \phi)=F * \phi^{\prime}$ almost everywhere. Hint: Prove it first for suitably nice ϕ.
(b) Show that if ϕ is a polynomial, then $F * \phi$ is a polynomial as well.

