QUALIFYING EXAM - APRIL 2016

Attempt the following six problems. Please note the following:

- Throughout the exam, unless indicated otherwise, integration is with respect to Lebesgue measure.
- We denote the Lebesgue measure of a set A by m(A).
- (1) Let X be a nonempty set, let $\mathcal{P}(X)$ denote its power set and let $\mu:\mathcal{P}(X)\to [0,\infty]$ be the "counting measure" (i.e., $\mu(A)=\#A$ if $A\subset X$ is a finite set, and $\mu(A)=\infty$ otherwise). It is known that $(X,\mathcal{P}(X),\mu)$ is a measure space (you don't have to show this). Suppose $\int_X |f(x)| \mathrm{d}\mu(x) < \infty$. Show that f has countable support.
- (2) For $f \in C([0,1])$, prove that

$$\lim_{n\to\infty} n \int_0^1 e^{-nx} f(x) \mathrm{d}x$$

exists and find the limit.

- (3) In this problem, let a rectangle in \mathbb{R}^2 be a set of the form $[a, b] \times [c, d]$. For a subset $E \subset \mathbb{R}^2$ and $t \in \mathbb{R}^2$, define $E + t = \{e + t \mid e \in E\}$.
 - (a) Consider the statement

For any measurable subset $E \subset \mathbb{R}^2$ and for any $\epsilon > 0$ there exists a finite union of rectangles $Q = \bigcup_{k=1}^{N} ([a_k, b_k] \times [c_k, d_k])$ so that

- $E \subset Q$
- $m(Q \setminus E) < \epsilon$.

Give a simple proof (if true) or a simple counterexample (if false).

(b) Suppose E is a measurable subset of \mathbb{R}^2 having finite measure. Show that if $\lim_{t\to 0} m(E\cap (E+t))=0$ then m(E)=0.

- 2
- (4) In this problem, let B_R denote the ball of radius R in \mathbb{R}^2 : $B_R = \{x \mid |x| < R\}$ Let f and g be measurable functions on \mathbb{R}^2 satisfying the following: there exists a constant C > 0 so that for every r > 0,

$$\int_{B_{2r}\setminus B_r} |f(x)|^3 dx < Cr^1 \text{ and } \int_{B_{2r}\setminus B_r} |g(x)|^4 dx < Cr^{-7}$$

- (a) Is $f \in L_1(B_1)$? Either prove it, or provide a counterexample.
- (b) Is $g \in L_1(B_1)$? Either prove it, or provide a counterexample.
- (c) Suppose, in addition to the above hypotheses, that f and g are continuous. Show that $fg \in L_1(\mathbb{R}^2)$.
- (5) Let (f_n) be a sequence of integrable functions satisfying

$$\int_{\mathbb{R}} |f_n(x)| \mathrm{d}x \le 2^{-n}$$

for all $n \in \mathbb{N}$. Show that $\lim_{n\to\infty} f_n(x) = 0$ almost everywhere.

- (6) Let $F: \mathbb{R} \to \mathbb{C}$ be an integrable function for which there exists a compact set $K \subset \mathbb{R}$ so that F(x) = 0 for almost every $x \in \mathbb{R} \setminus K$. For a continuous function ϕ , define the convolution $F * \phi$ as $F * \phi(x) = \int_{\mathbb{R}} F(x y)\phi(y) dy$.
 - (a) Prove that if ϕ is absolutely continuous, then $\frac{d}{dx}(F * \phi) = F * \phi'$ almost everywhere. Hint: Prove it first for suitably nice ϕ .
 - (b) Show that if ϕ is a polynomial, then $F*\phi$ is a polynomial as well.