ANALYSIS QUALIFYING EXAM - APRIL 2017

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, integration is with respect to Lebesgue measure, and $L^{p}(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^{d} with respect to Lebesgue measure.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) Let \mathbb{N} be the natural numbers, and \mathcal{B} be the σ-algebra of all subsets of \mathbb{N}.
(a) Give an example of a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ such that

$$
\begin{equation*}
\mu(\mathbb{N})=1 \tag{1}
\end{equation*}
$$

(b) Give an example of a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ such that

$$
\begin{equation*}
A \subseteq \mathbb{N}, \quad n \in \mathbb{N} \quad \Rightarrow \quad \mu(A+n)=\mu(A) \tag{2}
\end{equation*}
$$

(Here $A+n:=\{a+n \mid a \in A\}$.
(c) Can there exist a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ with the properties in lines (1) and (2) simultaneously? Justify your answer.
(2) For what values of $p \in(0, \infty)$ is the function $f(x, y)=\left(x^{4}+y^{2}\right)^{-p}$ integrable over the punctured disk $D^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x^{2}+y^{2} \leqslant 1\right\}$? Hint: consider the integrals $I_{n}=\int_{A_{n}} f(x, y) d x d y$, where $A_{n}=\left\{(x, y) \in D^{\prime} \mid 2^{-n-1} \leqslant x^{4}+y^{2} \leqslant 2^{-n}\right\}$; how are the various I_{n} related?
(3) Fix $p \in(1, \infty)$. Of the following two statements, one is true, and one is false. Prove the true one, and disprove the false one.
(a) There exists a constant $C>0$ such that for all simple functions $f:[1, \infty) \rightarrow \mathbb{C}$

$$
\int_{1}^{\infty}|f(x)| d x \leqslant C\left(\int_{1}^{\infty}|f(x)|^{p} d x\right)^{1 / p}
$$

(b) There exists a constant $C>0$ such that for all simple functions $f:[1, \infty) \rightarrow \mathbb{C}$

$$
\int_{1}^{\infty}|f(x)| d x \leqslant C\left(\int_{1}^{\infty}|x f(x)|^{p} d x\right)^{1 / p}
$$

(4) Let $C[-1,1]$ denote the space of continuous functions $f:[-1,1] \rightarrow \mathbb{R}$, equipped with the supremum norm. Let $\left(f_{n}\right)$ be a sequence of in $C[-1,1]$ with the following properties:

- each f_{n} is differentiable (with one-sided derivatives at the end points) and $\left|f_{n}^{\prime}(x)\right| \leqslant 1$ for all n, and all $x \in[-1,1]$;
- the sequence $\left(f_{n}\right)$ converges in norm to some $f \in C[-1,1]$.
(a) Show that f satisfies the inequality $|f(x)-f(y)| \leqslant|x-y|$ for all $x, y \in[-1,1]$.
(b) Give an example of $\left(f_{n}\right)$ and f with the properties above such that f is not differentiable. You do not have to justify your answer, and will get partial credit for persuasive pictures and explanation.
(c) Prove that a general f as in the statement is differentiable almost everywhere on $[-1,1]$.
(5) Show that for any $f \in L^{1}(\mathbb{R})$,

$$
\int_{\mathbb{R}} f(x) e^{i t x} d x \rightarrow 0 \text { as } t \rightarrow \infty
$$

(6) Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}(\mathbb{R})$ which converges to zero in L^{1}-norm. For each of the following statements, either prove it, or give a counterexample.
(a) $\left(f_{n}\right)$ converges to zero almost everywhere.
(b) $\left(f_{n}\right)$ converges to zero in measure.
(c) For any $g \in L^{1}(\mathbb{R}),\left\|f_{n} * g\right\|_{1}$ tends to zero. Here $f * g$ denotes the convolution defined by

$$
(f * g)(x)=\int_{\mathbb{R}} f(x-t) g(t) d t
$$

you may assume without proof that $f * g$ is a well-defined element of $L^{1}(\mathbb{R})$ when both f and g are in $L^{1}(\mathbb{R})$.

