ANALYSIS QUALIFYING EXAM - APRIL 2017

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, integration is with respect to Lebesgue measure, and $L^p(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^d with respect to Lebesgue measure.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
- (1) Let \mathbb{N} be the natural numbers, and \mathcal{B} be the σ -algebra of all subsets of \mathbb{N} .
 - (a) Give an example of a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ such that

$$\mu(\mathbb{N}) = 1. \tag{1}$$

(b) Give an example of a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ such that

$$A \subseteq \mathbb{N}, \quad n \in \mathbb{N} \quad \Rightarrow \quad \mu(A+n) = \mu(A).$$
 (2)

(Here $A + n := \{a + n \mid a \in A\}.$)

- (c) Can there exist a non-negative, non-zero measure μ on $(\mathbb{N}, \mathcal{B})$ with the properties in lines (1) and (2) simultaneously? Justify your answer.
- (2) For what values of $p \in (0, \infty)$ is the function $f(x,y) = (x^4 + y^2)^{-p}$ integrable over the punctured disk $D' = \{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 \leq 1\}$? Hint: consider the integrals $I_n = \int_{A_n} f(x,y) dx dy$, where $A_n = \{(x,y) \in D' \mid 2^{-n-1} \leq x^4 + y^2 \leq 2^{-n}\}$; how are the various I_n related?

- (3) Fix $p \in (1, \infty)$. Of the following two statements, one is true, and one is false. Prove the true one, and disprove the false one.
 - (a) There exists a constant C>0 such that for all simple functions $f:[1,\infty)\to\mathbb{C}$

$$\int_{1}^{\infty} |f(x)| dx \le C \left(\int_{1}^{\infty} |f(x)|^{p} dx \right)^{1/p}.$$

(b) There exists a constant C>0 such that for all simple functions $f:[1,\infty)\to\mathbb{C}$

$$\int_{1}^{\infty} |f(x)| dx \leqslant C \left(\int_{1}^{\infty} |xf(x)|^{p} dx \right)^{1/p}.$$

- (4) Let C[-1,1] denote the space of continuous functions $f:[-1,1] \to \mathbb{R}$, equipped with the supremum norm. Let (f_n) be a sequence of in C[-1,1] with the following properties:
 - each f_n is differentiable (with one-sided derivatives at the end points) and $|f'_n(x)| \leq 1$ for all n, and all $x \in [-1, 1]$;
 - the sequence (f_n) converges in norm to some $f \in C[-1,1]$.
 - (a) Show that f satisfies the inequality $|f(x) f(y)| \le |x y|$ for all $x, y \in [-1, 1]$.
 - (b) Give an example of (f_n) and f with the properties above such that f is not differentiable. You do not have to justify your answer, and will get partial credit for persuasive pictures and explanation.
 - (c) Prove that a general f as in the statement is differentiable almost everywhere on [-1, 1].
- (5) Show that for any $f \in L^1(\mathbb{R})$,

$$\int_{\mathbb{R}} f(x)e^{itx}dx \to 0 \text{ as } t \to \infty.$$

- (6) Let (f_n) be a sequence of functions in $L^1(\mathbb{R})$ which converges to zero in L^1 -norm. For each of the following statements, either prove it, or give a counterexample.
 - (a) (f_n) converges to zero almost everywhere.
 - (b) (f_n) converges to zero in measure.
 - (c) For any $g \in L^1(\mathbb{R})$, $||f_n * g||_1$ tends to zero. Here f * g denotes the convolution defined by

$$(f * g)(x) = \int_{\mathbb{R}} f(x - t)g(t)dt;$$

you may assume without proof that f * g is a well-defined element of $L^1(\mathbb{R})$ when both f and g are in $L^1(\mathbb{R})$.