ANALYSIS QUALIFYING EXAM, SPRING 2018

- Throughout this exam, unless otherwise indicated, m denotes the Lebesgue measure in \mathbb{R}^{d}, integration is with respect to m, and $L^{p}(E)$ denotes the Lebesgue space (real-valued functions) of a subset E of \mathbb{R}^{d} with respect to m.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1

Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be an enumeration of the rational numbers in (0,1 , and define

$$
f(x):=\sum_{k=1}^{\infty} \frac{1}{k^{2}\left|x-r_{k}\right|^{1 / 2}} \quad(0 \leq x \leq 1) .
$$

Prove that f is finite a.e. with respect to Lebesgue measure on $[0,1]$.

Problem 2

Let $f \in L^{2}([0,1])$, and suppose that

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad(n=0,1,2, \ldots)
$$

Show that $f=0$ a.e. with respect to Lebesgue measure on $[0,1]$.

Problem 3

Let μ and ν be finite positive measures on a set X such that $\mu \ll \nu$, and let $\frac{d \nu}{d(\mu+\nu)}$ be the Radon-Nikodym derivative of ν with respect to $\mu+\nu$. Show that

$$
0<\frac{d \nu}{d(\mu+\nu)}<1
$$

almost everywhere with respect to μ.

Problem 4

Let μ be a positive finite measure on a set X with $\mu(X)>0$, and let $f \in L^{\infty}(\mu)$ with $\|f\|_{\infty}>0$.
a. Show that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
b. For $n \in \mathbb{N}$, let $\alpha_{n}:=\int_{X}|f|^{n} d \mu$. Show that

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=\|f\|_{\infty}
$$

Problem 5

a. Let $F \subset \mathbb{R}^{d}$ be measurable. Prove that for all $x \in \mathbb{R}^{d}$,

$$
m(F)=\int_{\mathbb{R}^{d}} \chi_{F}(x-t) d t
$$

Here χ_{F} denotes the characteristic function of the set F.
b. Let E and F be measurable subsets of \mathbb{R}^{d} with $m(E) m(F)>0$. Prove that there is a translate of F that intersects E in a set of positive measure. Here a translate of F is a set of the form $F+t=\{f+t: f \in F\}$ for some $t \in \mathbb{R}^{d}$.

Problem 6

Let $1<p<\infty$, and let $\left(f_{n}\right)$ be a sequence of functions in $L^{p}([0,1])$ that converges almost everywhere to a function $f \in L^{p}([0,1])$. Suppose in addition that there is a constant M such that $\left\|f_{n}\right\|_{p} \leq M$ for all n.

Show that for each $g \in L^{q}([0,1])$, where $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} g=\int_{0}^{1} f g
$$

