## ANALYSIS QUALIFYING EXAM - JANUARY 2019

Attempt the following six problems. Please note the following:

- Throughout this exam, $L^{p}(X)$ denotes the $L^{p}$-space of a measure space $(X, \mathcal{M}, \mu)$ with the associated norm of a function being $\|f\|_{p}$. Subsets of $\mathbb{R}^{d}$ are equipped with the Lebesgue sigma algebra and Lebesgue measure unless otherwise stated.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) Let $\left\{f_{n}\right\}$ be a sequence of non-negative real valued measurable functions on a measure space $(X, \mathcal{M}, \mu)$. Suppose that

$$
\sum_{n=1}^{\infty} \mu\left(\left\{x \in X: f_{n}(x)>1\right\}\right)<\infty .
$$

Show that for $\mu$-almost every $x \in X, \limsup _{n \rightarrow \infty} f_{n}(x) \leq 1$.
(2) Show that if $f \in L^{p}(\mathbb{R})$ for some $p \in[1, \infty)$ then

$$
\lim _{t \rightarrow \infty} t^{p} \cdot m(\{x:|f(x)|>t\})=0 .
$$

(3) Let $f \in L^{1}(\mathbb{R})$. Prove that

$$
\lim _{t \rightarrow 0} \int_{\mathbb{R}}|f(x+t)-f(x)| d x=0
$$

(4) Define $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{k}(x)=x^{k} e^{-x^{2} / 2}$, for $k=0,1, \ldots$
(a) Prove that $\left\|f_{k}\right\|_{2}^{2} \leq k$ ! for all $k \in \mathbb{N}$.

You may assume without proof that $\left\|f_{0}\right\|_{2}^{2} \leq 1$.
It may help to observe that $\left\|f_{k}\right\|_{2}^{2}=\int_{0}^{\infty} y^{k-1 / 2} e^{-y} d y$ for $k \geq 1$.
(b) Show that for any $\lambda \in \mathbb{R}$, the series

$$
\sum_{k=0}^{\infty} \frac{i^{k} \lambda^{k} f_{k}}{k!}
$$

converges in $L^{2}(\mathbb{R})$ to the function $g_{\lambda}(x)=e^{i \lambda x-x^{2} / 2}$.
You may assume without proof that $n!\geq \sqrt{2 \pi} n^{n+1 / 2} e^{-n}$; this is a consequence of Stirling's approximation.
(5) Let $f \in L^{1}(\mathbb{R})$, and let $g \in L^{p}(\mathbb{R})$ for some $p \in[1, \infty)$. Define their convolution by

$$
(f * g)(x):=\int_{\mathbb{R}} f(y) g(x-y) d y
$$

Assuming that the function $y \mapsto f(y) g(x-y)$ is measurable for fixed $x \in \mathbb{R}$, show that $(f * g)(x)$ is well-defined for almost all $x \in \mathbb{R}$, that the resulting function is in $L^{p}(\mathbb{R})$, and that $\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}$.
(6) Let $\mu$ and $\nu$ be finite, positive measures on a measurable space $(X, \mathcal{M})$. Prove that the following are equivalent:
(a) $\nu$ is absolutely continuous with respect to $\mu$.
(b) for every $\varepsilon>0$ there exists $\delta>0$ with the following property: if $A \in \mathcal{M}$ and $\mu(A)<\delta$ then $\nu(A)<\varepsilon$.

