ANALYSIS QUALIFYING EXAM - JANUARY 2021

Attempt the following six problems. Please note the following:

- Throughout this exam, unless otherwise indicated, m denotes the Lebesgue measure in \mathbb{R}^{d}, integration is with respect to m, and $L_{p}(E)$ denotes the Lebesgue space of a subset E of \mathbb{R}^{d} with respect to m.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!
(1) Let μ be a finite measure on X and let $f: X \rightarrow(0, \infty)$ be a positive, measurable function. Show that, for any $\varepsilon>0$, there exist $\delta>0$ and a measurable subset E of X such that $f \geq \delta$ on E and $\mu(X \backslash E)<\epsilon$.
(2) Give an example of a function $f \in L_{1}(\mathbb{R})$ which satisfies the following property: for every nontrivial interval $I, f \cdot \chi_{I} \notin L_{\infty}(\mathbb{R})$. (Here χ_{I} is the characteristic function of the interval I.) Be sure to explain why your example works.
(3) Let \mathcal{P}_{e} denote the family of all even polynomials. Thus a polynomial $p \in \mathcal{P}_{e}$ if and only if $p(x)=p(-x)$ for all x. Prove that the closure of \mathcal{P}_{e} in $L_{1}([-1,1])$ is

$$
A:=\left\{f \in L_{1}([-1,1]) \mid f(x)=f(-x) \text { a.e. }\right\} .
$$

You may use without proof that the continuous functions on $[-1,1]$ are dense in $L_{1}([-1,1])$.
(4) In this problem, let \mathcal{B} denote the Borel σ-algebra on \mathbb{R}.
(a) Provide an example of a signed Borel measure $\nu: \mathcal{B} \rightarrow \mathbb{R}$ whose range is not connected.
(b) Show that if λ is a finite, signed Borel measure for which $m(A)=0$ implies $\lambda(A)=0$, then the range of λ is compact and connected.
(5) Suppose $k: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded, continuous function with the additional property that

$$
\sup _{-\infty<a<b<\infty}\left|\int_{a}^{b} k(x) d x\right|<\infty
$$

(Sine and cosine are examples of such functions.) For $f \in L_{1}(\mathbb{R})$, define the function $K f: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
K f(x)=\int_{\mathbb{R}} k(x y) f(y) d y, \quad x \in \mathbb{R}
$$

Prove that for every $f \in L_{1}(\mathbb{R})$,
(a) $K f$ is continuous on \mathbb{R}, and
(b) $\lim _{|x| \rightarrow \infty} K f(x)=0$.

Suggestion: For part (b), first consider the case that f is the characteristic function of a finite interval.
(6) Let μ be a finite measure on X and suppose that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{2}(\mu)$ satisfies $\sup _{n}\left\|f_{n}\right\|_{2}=M<\infty$ and $f_{n}(x) \rightarrow f(x)$ a.e. Prove that $f_{n} \rightarrow f$ in $L_{1}(\mu)$.

