ANALYSIS QUALIFYING EXAM, SPRING 2023

- Throughout this exam (X, μ) denotes an arbitrary measure space, and $L^{p}(\mu)$ the corresponding Lebesgue space. Also, m denotes the Lebesgue measure in \mathbb{R}^{d}, and $L^{p}(E)$ denotes the Lebesgue space (real-valued functions) of a subset E of \mathbb{R}^{d} with respect to m.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1

a. Let $f: X \rightarrow \mathbb{R}$ be measurable, and let $p \in(0, \infty)$. For $n \in \mathbb{N}$, define

$$
E_{n}:=\{n-1 \leq|f|<n\} .
$$

Show that if $\mu\left(E_{1}\right)<\infty$, then $f \in L^{p}(\mu)$ if and only if $\sum_{n=1}^{\infty} n^{p} \mu\left(E_{n}\right)<\infty$.
b. Deduce that $\log \in L^{p}((0,1))$ for all $p \in(0, \infty)$.

Problem 2

a. Let $B \subset \mathbb{R}^{n}$ be Borel. Prove that for all $x \in \mathbb{R}^{n}$,

$$
m(B)=\int_{\mathbb{R}^{n}} \chi_{B}(x-t) d t
$$

b. Let A and B be Borel subsets of \mathbb{R}^{n} with $m(A) m(B)>0$. Prove that there is a translate of B that intersects A in a set of positive Lebesgue measure. Here a translate of B is a set of the form $B+t=\{b+t: b \in B\}$ for some $t \in \mathbb{R}^{n}$.

Problem 3 Consider the function $f(x, y):=2 e^{-2 x y}-e^{-x y}$ defined on $[0, \infty) \times[0,1]$.
a. Show that

$$
\int_{0}^{1} \int_{0}^{\infty} f(x, y) d x d y=0
$$

b. Show that

$$
\int_{0}^{\infty} \int_{0}^{1} f(x, y) d y d x=\log 2
$$

c. What can we deduce about f ? Explain.

Problem 4 Let $f \in L^{1}([0,1]), f>0$. Which of the numbers

$$
\int_{0}^{1} f \log f d m
$$

or

$$
\left(\int_{0}^{1} f d m\right)\left(\int_{0}^{1} \log f d m\right)
$$

is the larger?
(Hint: Use Jensen's inequality.)
Problem 5 Suppose that $\mu(X)=1$, and let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of measurable subsets of X. Recall that $\left(A_{n}\right)_{n \in \mathbb{N}}$ is independent if

$$
\mu\left(\bigcap_{j=1}^{n} A_{i_{j}}\right)=\prod_{j=1}^{n} \mu\left(A_{i_{j}}\right)
$$

for all $i_{1}, \ldots, i_{n} \in \mathbb{N}$.
a. Show that if $\left(A_{n}\right)_{n \in \mathbb{N}}$ is independent, then so is $\left(A_{n}^{c}\right)_{n \in \mathbb{N}}$, where A_{n}^{c} is the complement of A_{n} in X.
b. Suppose that $\left(A_{n}\right)_{n \in \mathbb{N}}$ is independent and that $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\infty$. Show that $\mu\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=1$, where

$$
\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} .
$$

(Hint: Let $A:=\limsup \operatorname{sum}_{n \rightarrow \infty} A_{n}$. Show that $\mu\left(A^{c}\right)=0$. You might want to use part a and the inequality $1-x \leq e^{-x}$ valid for $x \geq 0$.)

Problem 6 Let $X=[0,1]$ and let $\mathcal{B}=\mathcal{B}([0,1])$ be the σ-algebra of Borel subsets of $[0,1]$. Let μ be the counting measure on \mathcal{B}, i.e., $\mu(E)$ equals the cardinality of E for $E \in \mathcal{B}$.
a. Show that m is absolutely continuous with respect to μ.
b. Show that there is no $f \in L^{1}(\mu)$ such that $d m=f d \mu$.
c. Does this contradict the Radon-Nikodym theorem? Explain.

