SAMPLE APPLIED MATH QUALIFYING EXAM 2

1. For the motion of a damped pendulum, show that the governing equation is of the form $\ddot{x}+b \dot{x}+c \sin x=0, b>0, c>0$, stating any approximations you make. Perform linear stability analysis and classification of the fixed points and sketch the phase portrait for different cases that can occur depending on the parameters b and c.
2. Consider two systems on the plane \mathbb{R}^{2} :

$$
\dot{x}=f(x), \quad \dot{x}=g(x)
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are C^{1} and perpendicular (i.e. $\langle f(x), g(x)\rangle=0$ for all $\left.x \in \mathbb{R}^{2}\right)$.
Prove that if one of the systems has a (nontrivial) periodic orbit, then the other has fixed point.
3. Consider the planar system given in polar coordinates by

$$
\begin{aligned}
\dot{r} & =r\left(\mu+2 r^{2}-r^{4}\right) \\
\dot{\theta} & =1-\nu r^{2} \cos \theta
\end{aligned}
$$

(a) Find the conditions on parameters μ and ν under which there are zero, one, and two periodic orbits.
(b) Fix $\nu=0$ and perform linear stability analysis of these orbits.
(c) Describe the types of bifurcation that occur as one of the parameters μ and ν is varied while the other is kept fixed.
4. Consider the following planar system

$$
\begin{aligned}
& \dot{x}=\frac{1}{2} x+y+x^{2} y \\
& \dot{y}=x+2 y+\lambda y+y^{2}
\end{aligned}
$$

where $\lambda \in \mathbb{R}$ is a parameter. Use the center manifold to describe bifurcations near the origin.
5. Consider a discrete dynamical system $x \mapsto g_{\mu}(x)$ where $g_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ is the tent map with parameter μ, that is

$$
g_{\mu}(x)=\left\{\begin{aligned}
\mu x, & x<\frac{1}{2} \\
\mu(1-x), & x \geq \frac{1}{2}
\end{aligned}\right.
$$

and assume $\mu>1$.
(a) Find fixed points of g_{μ} and determine their stability.
(b) Compute the Lyapunov exponent of g_{μ}.
(c) Compute the escape set, E, of the given dynamical system. That is, compute the set of all points $x \in \mathbb{R}$ such that the sequence $g_{\mu}^{n}(x), n=1,2, \ldots$ is unbounded.
(d) Construct a one-to-one function from $\Lambda=\mathbb{R} \backslash E$, the complement of E, to $\Sigma=$ $\{0,1\}^{\mathbb{N}}$, the set of all sequences of 0 's and 1 's.
6. Suppose that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and bounded. Show that

$$
u(x, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|x-y|^{2}}{4 t}\right) g(y) d y
$$

satisfies the following conditions:
(a) $u(x, t) \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$
(b) $u_{t}-\Delta u=0$ for $x \in \mathbb{R}^{n}$ and $t>0$.
(c) $\lim _{y \rightarrow x, t \rightarrow 0+} u(y, t)=g(x)$.

Use the above results to show that for initial heat distribution $g(x) \geq 0$ and not identically 0 , the temperature $u(x, t)$ is greater than or equal to 0 for all $t>0$. Explain why this shows infinite propagation speed for disturbances.
7. Consider the $n \times n$ matrix A obtained by discretizing $\frac{d}{d x}$ over $[0,1]$ with central differences:

$$
\mathbf{A}=\frac{1}{2(n+1)}\left(\begin{array}{ccccc}
0 & 1 & 0 & & 0 \\
-1 & 0 & 1 & & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & & -1 & 0 & 1 \\
0 & & 0 & -1 & 0
\end{array}\right)
$$

(a) For which values of n is \mathbf{A} singular and for which values is it non-singular?
(b) Prove that all the eigenvalues of \mathbf{A} are of the form $\lambda=i t$, where $t \in\left[-\frac{1}{n+1}, \frac{1}{n+1}\right]$.

