SAMPLE APPLIED MATH QUALIFYING EXAM 3

1. Consider the Lorenz system, which is a vastly oversimplified model of atmospheric convection:

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =\rho x-y-x z \\
\dot{z} & =x y-\beta z
\end{aligned}
$$

where $\sigma, \rho, \beta \geq 0$.
(a) Suppose $\rho<1$. Show that the origin is a globally asymptotically stable equilibrium.
Hint: Look for a Liapunov function in the form $a x^{2}+b y^{2}+c z^{2}$
(b) Show that regardless of parameter values, trajectories of the Lorenz system enter the ellipsoid

$$
\rho x^{2}+\sigma y^{2}+\sigma(z-2 \rho)^{2} \leq c, \quad 0<c<\infty
$$

within finite time and remain in it thereafter.
2. Consider a planar gradient system:

$$
\dot{x}=\nabla V(x) \quad x \in \mathbb{R}^{2},
$$

where $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth map. Prove that the non-wandering set of this system contains only fixed points and no periodic or homoclinic orbits are possible.
Hist: Use $V(x)$ as a Liapunov function.
3. Consider the system

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=a\left(1-x^{4}\right) y-x
\end{aligned}
$$

(a) Find all equilibrium points, perform linear stability analysis, and classify the equilibrium points accordingly.
(b) Sketch the phase plane.
(c) Describe the bifurcation that occurs at $a=0$.
(d) Prove that there exists a unique closed orbit for this system when $a>0$.
(e) Show that all nonzero solutions of the system tend to this closed orbit when $a>0$.
4. Consider a discrete dynamical system $x \mapsto g(x)$ where $g:[0,1] \rightarrow[0,1]$ is defined by

$$
g(x)=\left\{\begin{aligned}
1-2 x, & 0 \leq x \leq \frac{1}{2} \\
-1+2 x, & \frac{1}{2}<x \leq 1
\end{aligned}\right.
$$

(a) Find fixed points of g and determine their stability.
(b) Determine how g acts on the binary expansion of any $x \in[0,1]$.
(c) Use binary expansions to show that g has points of any period and the set of all periodic points is dense in $[0,1]$.
(d) Compute the Lyapunov exponent of g.
5. Consider the vector $x=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$. Construct a matrix $A \in G L(3, \mathbb{R})$ such that A satisfies all of the following:
(a) $A^{2}=\mathrm{I}_{3}$ (the identity matrix on \mathbb{R}^{3})
(b) A has two positive eigenvalues.
(c) $A x=-x$
6. A spherical ball of mochi with uniform temperature T_{0}, radius a and thermal diffusivity κ is thrown into icy water. Solve for the subsequent temperature T governed by the heat equation:

$$
\frac{\partial T}{\partial t}=\kappa \nabla^{2} T
$$

where the Laplacian is given in spherical coordinates:

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

Deduce that a sphere that is twice as large in diameter requires four times as long to cool down.

