SAMPLE APPLIED MATH QUALIFYING EXAM 4

- 1. Data from the Hudson Bay Company in Canada goes back to 1840 and shows periodic cycles in the populations of snowshoe hare (prey P) and lynx (predator Q).
 - (a) Derive a model for these two populations, P and Q, under the assumptions:
 - i. the prey population, P, grows exponentially in time if there are no predators,
 - ii. the rate of predation, i.e., the rate at which the predators eat the prey, depends on the likelihood of encounters between the two populations, P and Q,
 - iii. the growth rate of the predator population is proportional to food intake, i.e., proportional to the predation rate,
 - iv. the predator population dies off exponentially in time if there are no prey.
 - (b) Nondimensionalize the variables and parameters in these two equations and determine any remaining dimensionless parameter(s). Give an interpretation of the dimensionless parameter(s).
 - (c) Determine the steady states of the system, and perform linear stability analysis and classify the steady states accordingly.
 - (d) Sketch the (P, Q) phase plane including the nullclines and steady states.
 - (e) Sketch the direction fields through the nullclines and of a few trajectories in the phase plane.
 - (f) Determine the period of small amplitude oscillations about the steady state.
 - (g) What can you say about the structural stability of this system?
- 2. Consider a discrete dynamical system defined by a C^r $(r \ge 1)$ diffeomorphism $x \mapsto g(x), x \in \mathbb{R}^n$. Suppose that $x = \bar{x}$ is a nonwandering point, that is, for any neighborhood $U \ni \bar{x}$ there is $n \neq 0$ such that $g^n(U) \cap U \neq \emptyset$. Prove that there are countably many such n.
- 3. Consider the following variation of the predator-prey system:

$$\dot{x} = x(x(1-x) - y)$$
$$\dot{y} = y(x-a),$$

where $x, y \ge 0$ represent prey and predator populations, respectively, and a > 0 is a control parameter.

- (a) Find equilibrium points, perform linear stability analysis, and classify the equilibrium points accordingly.
- (b) Deduce that the predators go extinct if a > 1

- (c) Show that a Hopf bifurcation occurs at $a = \frac{1}{2}$.
- 4. Let $T = [0,1] \times [0,1]$ and consider a discrete dynamical system $x \mapsto g(x)$ where $g: T \to T$ is defined by

$$g(x,y) = (2x+y, x+y) \mod 1$$

Prove that a point $p \in T$ is periodic if and only if $p \in T \cap \mathbb{Q} \times \mathbb{Q}$, that is, p has rational coordinates.

5. Consider the following heat equation on the interval $[0, \pi]$:

$$u_t = u_{xx} \qquad x \in (0, \pi), \ t > 0,$$

$$u(0, t) = A \qquad u(\pi, t) = B, \qquad t > 0,$$

$$u(x, 0) = g(x), \qquad x \in (0, \pi),$$

where A, B are constants.

- (a) Construct a formal solution.
- (b) What conditions on g(x) assure existence of a classical solution? Include a proof or state explicitly any theorems used.
- (c) Find the equilibrium state of the temperature distribution.
- 6. Let U and V be subspaces of \mathbb{R}^n . Let P_U and P_V be $n \times n$ matrices that represent the orthogonal projections onto U and V, respectively. Let $W = U \cap V$. Prove that

$$S = \lim_{n \to \infty} \left(P_U P_V \right)^n$$

exists and that S represents the orthogonal projection onto W.