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THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

L. F. KLOSINSKI
Department of Mathematics, University of Santa Clara, CA 95053

G. L. ALEXANDERSON
Department of Mathematics, University of Santa Clara, CA 95053

A. P. HILLMAN
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131

The following results of the forty-first William Lowell Putnam Mathematical Competition, held
on December 6, 1980, have been determined in accordance with the governing regulations. This
annual contest is supported by the William Lowell Putnam Prize Fund for the Promotion of
Scholarship, left by Mrs. Putnam in memory of her husband, and is held under the auspices of the
Mathematical Association of America.

The first prize, five thousand dollars, was awarded to the Department of Mathematics of
Washington University, St. Louis, Missouri. The members of its winning team were: Kevin P.
Keating, Nathan E. Schroeder, and Edward A. Shpiz; each was awarded a prize of two hundred
fifty dollars.

The second prize, two thousand five hundred dollars, was awarded to the Department of
Mathematics of Harvard University, Cambridge, Massachusetts. The members of its team were:
Michael Raship, Ehud B. Reiter, and Brian F. Sheppard; each was awarded a prize of two
hundred dollars.

The third prize, one thousand five hundred dollars, was awarded to the Department of
Mathematics of the University of Maryland, College Park, Maryland. The members of its team
were: Ravi B. Boppanna, Brian R. Hunt, and Eric 1. Kuritzky; each was awarded a prize of one
hundred fifty dollars.

The fourth prize, one thousand dollars, was awarded to the Department of Mathematics of the
University of Chicago, Chicago, Illinois. The members of its team were Daniel J. Goldstein,
Nicholas F. Reingold, and Michael P. Spertus; each was awarded a prize of one hundred dollars.

The fifth prize, five hundred dollars, was awarded to the Department of Mathematics of the
University of California, Berkeley, California. The members of its team were Randall L. Dougherty,
Lin Goldstein, and Robin A. Pemantle; each was awarded a prize of fifty dollars.

The five highest-ranking individual contestants, in alphabetical order, were Eric D. Carlson,
Michigan State University; Randall L. Dougherty, University of California, Berkeley; Daniel J.
Goldstein, University of Chicago; Laurence E. Penn, Harvard University; and Michael Raship,
Harvard University. Each of these students was designated a Putnam Fellow by the Mathematical
Association of America and awarded a prize of five hundred dollars by the Putnam Prize Fund.

The next five highest-ranking individuals, in alphabetical order, were Joel Friedman, Harvard
Umver51ty, Fred W. Helenius, Massachusetts Institute of Technology; Irwin L. Jungreis, Cornell
University; Michael J. Larsen, Harvard University; and Arthur S. Parker, University of Kansas.
Each of these students was awarded a prize of two hundred fifty dollars.

The following teams, named in alphabetical order, received honorable mention: California
Institute of Technology, with team members R. Sekhar Chivukula, Peter W. Shor, John R.
Stembridge; Case Western Reserve University, with team members Edward J. Branagan, Jr., Scott
R. Fluhrer, David A. Natwick; Massachusetts Institute of Technology, with team members Andrew
J. Bernoff, Josh D. Cohen, Lorenzo A. Sadun; Michigan State University, with team members Eric
D. Carlson, Karl A. Dahlke, Lloyd A. Rawley; and Princeton University, with team members
Mark P. Kleiman, Jacob Nemchyonok, and Charles H. Walter.

Honorable mention was achieved by the following thirty-three individuals, named in alphabeti-
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606 L. F. KLOSINSKI, G. L ALEXANDERSON, AND A. P. HILLMAN [October

cal order: Michael H. Albert, University of Waterloo; Richard J. Beigel, Stanford University;
David D. Chambliss, Princeton University; Stephen J. Curran, Beloit College; Marc A. Drexler,
Johns Hopkins University; Paul Feit, Harvard University; Paul N. Feldman, Yale University;
Scott R. Fluhrer, Case Western Reserve University; Brian R. Hunt, University of Maryland,
College Park; Howard J. Karloff, University of Pennsylvania; Kevin P. Keating, Washington
University, St. Louis; Gary R. Lawlor, Brigham Young University; Franklin M. Maley, Amherst
College; Michael P. Mattis, Harvard University; Victor J. Milenkovic, Harvard University; David
J. Montana, Harvard University; Evan Morton, Harvard University; Robin A. Pemantle, Univer-
sity of California, Berkeley; Matthew J. Raw, Washington University, St. Louis; Zinory Reichstein,
California Institute of Technology; Ehud B. Reiter, Harvard University; Subir Sachdev, Mas-
sachusetts Institute of Technology; Lorenzo A. Sadun, Massachusetts Institute of Technology;
Erin J. Schram, Michigan State University; Nathan E. Schroeder, Washington University, St.
Louis; Peter W. Shor, California Institute of Technology; Edward A. Shpiz, Washington Univer-
sity, St. Louis; Michael Spertus, University of Chicago; James Van Buskirk, University of
Minnesota, Duluth; Charles H. Walter, Princeton University; Lawrence B. Weinstein, Yale
University; David A. Williams, Washington University, St. Louis; Robert L. Zako, Harvard
University.

The other individuals who achieved ranks among the top 100, in alphabetical order of their
schools, were: University of Alberta, Robert P. Morewood, Peter B. Weichman; Amherst College,
George G. Watson; Brown University, Bruce A. Hendrickson; California Institute of Technology,
R. Sekhar Chivukula, Lance J. Dixon, Scott R. Johnson, Christopher P. Lutz, David J. Muraki,
John R. Stembridge; University of California, Davis, Theodore W. Jones, Carl A. Lundgren;
University of California, Santa Barbara, John R. Rose, Dean Connable Wills; University of
California, Santa Cruz, Stephen P. Carrier; Case Western Reserve University, David A. Natwick,
University of Chicago, Nicholas F. Reingold; George Mason University, Stephen Billups; Harvard
University, Anthony R. Barker, Michael V. Finn, James G. Propp, Jonathan S. Roberts, Brian F.
Sheppard, Carlos T. Simpson, William A. Titus, Ron K. Unz, Robert J. Waldmann; University of
Illinois, Urbana-Champaign, Jerome V. Walsh; lowa State University, William R. Somsky;
Université Laval, Pierre Tremblay; University of Maryland, College Park, Ravi B. Boppana, Eric I.
Kuritzky; Massachusetts Institute of Technology, Josh D. Cohen, David Seibert; Michigan State
University, Karl Dahlke; University of Minnesota, Minneapolis, Peter M. Thompson; University
of North Carolina, Chapel Hill, Edward J. Rak; University of Oklahoma, Gary D. Kohler; Oregon
State University, Gregory L. Larson; University of Pittsburgh, Randall S. Henry; Pomona College,
William M. McGovern; Princeton University, David R. Grant, Mark P. Kleiman, James L.
Mclnnes, David P. Roberts, Bruce K. Smith, Stephen A. Vavasis; Rensselaer Polytechnic Institute,
David R. Iny, Gregory F. Taylor; Rose-Hulman Institute of Technology, Michael L. Call; Stanford
University, Thomas C. Hales; University of Virginia, Mark G. Pleszkoch; Washington University,
St. Louis, Bard Bloom, Chim-Chung Chan, Karl F. Narveson; University of Waterloo, Guy W.
Hulbert, Duncan J. Murdoch; Yale University, Alan S. Edelman.

There were 2043 individual contestants from 335 colleges and universities in Canada and the
United States in the competition of December 6, 1980. Teams were entered by 237 institutions.

The Questions Committee of the forty-first competition consisted of E. J. Barbeau (Chairman),
Joel Spencer, and K. B. Stolarsky; they proposed the problems listed below and were most
prominent among those suggesting solutions.

PROBLEMS
Problem A-1

Let b and ¢ be fixed real numbers and let the ten points (j, y,),/ = 1,2,..., 10, lic on the parabola y = x2+ bx + c.
For j=1,2,...,9, let I, be the point of intersection of the tangents to the given parabola at (j, y) and
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(J + 1, ,41). Determine the polynomial function y = g(x) of least degree whose graph passes through all nine
points [,.

Problem A-2

Let r and s be positive integers. Derive a formula for the number of ordered quadruples (a, b, ¢, d) of positive
integers such that

3-7"=lem[a, b,c] =lem[a, b,d] =lem[a,c,d] =lem[b, ¢, d].
The answer should be a function of r and s.

(Note that 1 cm [x, y, z] denotes the least common multiple of x, y, z.)

Problem A-3
Evaluate
/2 dx
% 1+ (tan x)ﬁ
Problem A-4

(a) Prove that there exist integers a, b, ¢, not all zero and each of absolute value less than one million, such that

la+by2 +e3]< 107"

(b) Let a, b, ¢ be integers, not all zero and each of absolute value less than one million. Prove that

a+by2 +¢/3[> 1077

Problem A-5

Let P(t) be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations
X X
0= | P(t)sintdr= [ P(t)costdt
[P [P

has only finitely many real solutions x.
Problem A-6

Let C be the class of all real valued continuously differentiable functions f on the interval 0 < x < 1 with f(0) =0
and f(1) = 1. Determine the largest real number u such that

1
ws [117/(x) = f(x)lds
for all fin C.
Problem B-1
For which real numbers ¢ is (e*+ ¢~ ¥)/2 < ¢ for all real x?
Problem 13-2

Let S be the solid in three-dimensional space consisting of all points (x, y, z) satisfying the following system of six
simultaneous conditions:

x=0, y=0, z=0,
x+y+z=<ll,

2x +4y + 3z < 36,
2x +3z<24.

(a) Determine the number v of vertices of S.
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(b) Determine the number e of edges of S.

(c) Sketch in the bc-plane the set of points (b, ¢) such that (2,5, 4) is one of the points (x, y, z) at which the linear
function bx + ¢y + z assumes its maximum value on S.

Problem B-3

For which real numbers a does the sequence defined by the initial condition uy = a and the recursion u,, | = 2u, — n*
have u,, > 0 for all n = 0?

(Express the answer in the simplest form.)

Problem B-4
Let A, A,,..., A\ge¢ be subsets of a finite set X such that |4;| > 3| X| for 1 < i< 1066. Prove there exist ten
elements x,,..., x;o of X such that every 4, contains at least one of x,,..., xo.

(Here | S| means the number of elements in the set S.)
Problem B-5

For each t = 0, let S, be the set of all nonnegative, increasing, convex, continuous, real-valued functions f( x) defined
on the closed interval [0, 1] for which

fQ) = 2£(2/3) + f(1/3) = 1[ f(2/3) = 2/(1/3) +f(0)]-
Develop necessary and sufficient conditions on ¢ for S, to be closed under multiplication.

(This closure means that, if the functions f(x) and g(x) are in S,, so is their product f(x)g(x). A function f(x) is
convex if and only if f(su + (1 — s)v) < sf(u) + (1 — 5)f(v) whenever 0 <s < 1.)

Problem B-6

An infinite array of rational numbers G(d, n) is defined for integers d and n with 1 < d < n as follows:
1 d < .
G(ln)=+, G(d,n)=+ S G(d—1,i—1) for d>1.
i=d

For 1 < d < p and p prime, prove that G(d, p) is expressible as a quotient s/t of integers s and ¢ with ¢ not an
integral multiple of p.

(For example, G(3,5) = 7/4 with the denominator 4 not a multiple of 5.)

On the line of the problem number for each solution, a 12-tuple (n,y, ng,..., ngy, n_;) is given
in which the entry #, for 10 = i = 0 is the number of contestants among the top 207 who achieved
i points for the problem, and n _, is the number not submitting a solution.

SOLUTIONS
A-1. (52,106,7,9,0,0,0,1,8,8,8,8)

We show that g(x) = x*+ bx + ¢ — (1/4). The equation of the tangent to the given parabola at
P,=(j,y;) is easily seen to be y = L,, where L;= (2j + b)x —j*+ c. Solving y = L, and
y = L, ’simultaneously, one finds that x = (2 + 1)/2 and soj = (2x — 1)/2 at I,. Substituting
this expression for j into L, gives the g(x) above.

A-2. (142,0,0,0,0,0,0,0,14,27,13,11)

We show that the number is (1 + 4r 4+ 6r2)(1 + 4s + 652). Each of a, b, ¢, d must be of the
form 37" with min {0,1,...,r} and nin {0, 1,..., s}. Also m must be r for at least two of the
four numbers, and n must be s for at least two of the four numbers. There is one way to have
m = r for all four numbers, 4r ways to have one m in {0, 1,..., r — 1} and the other three equal
to r, and (4)r?= 6r2 ways to have two of the m’sin {0,1,..., r — 1} and the other two equal to
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r. Thus there are 1 + 4r + 6% choices of allowable m’s and, similarly, 1 + 4s + 652 choices of
allowable n’s.

A-3. (20,2,1,0,0,0,0,0,2,2,39, 141)

Let I be the given definite integral and y2 = r. We show that I = /4. Using x = (7/2) — u, one
has
_ (0 __—du _ (m/2 tan’ udu
I_fn/zl + cot” u j(.) tan"u + 1°

Hence

7/2 ¢
21_// 1 + tan"x
0

_ (", _ _
= 1+tan,xdx—f0 dx=n/2 and I=m/4.

A-4. (4,6,2,0,0,0,0, 1,23,10,29, 132)

(). Let S be the set of the 10'® real numbers r + sy2 + #/3 witheachofr, s, tin {0, 1,...,106— 1}
and let d = (1 + V2 + V/3)10°. Then each x in S is in the interval 0 < x < d. This interval is
partitioned into 10'® — 1 “small” intervals (k — 1)e < x < ke with e = d/(10'® — 1) and k taking
on the values 1,2,...,10'® — 1. By the pigeonhole principle, two of the 10'® numbers of S must be
in the same small interval and their difference a + by2 + ¢/3 gives the desired a, b, ¢ since
c<107".

(b) Let F,=a + b/2 + ¢/3 and F,, F;, F, be the other numbers of the form a = b/2 + ¢/3.
Using the irrationality of V2 and y3 and the fact that a, b, ¢ are not all zero, one easily shows
that no F, is zero. (The demonstration of this was Problem A-1 of the 15th Competition, held on
March 5, 1955. For the proof, see page 402 of The William Lowell Putnam Mathematical
Competition Problems and Solutions: 1938-1964, published by the MAA, or see this MONTHLY, 62
(1955) 561.) One also sees readily that the product P = F,F, F,F, is an integer. Hence |P| = 1.
Then |F,| = 1/|F,F,F,| > 10 2! since | F,| < 107 and thus 1/|F,| > 10~ for each i.

A-S. (8,6,6,4,3,3,0,2,2,11,55,107)

Let Q=P — P" + PV— ---. Using repeated integrations by parts, the equations of the given
system become

fo(t)sintdt = —Q(x)cos x + Q’(x)sin x + Q(0) =0,
0

[ P(t)cos tdt = Q(x)sin x + Q' (x)cos x = 0'(0) = 0.
0
These imply that

Q(x) = Q’(0)sin x + Q(0)cos x. (E)

Since P‘and, hence, Q are polynomials of positive degree and the right side of (E) is bounded,
equation (E) has all of its solutions in some interval | x| < M. In such an interval, P(x)sin x has
only finitely many zeros and [; P(¢)sin ¢t dt = 0 has at most one more zero by Rolle’s Theorem.

Q.E.D.

A-6. (1,0,1,0,0,10,0,0,3,3,73,116)

We show that u = 1/e. Since f' — f= (fe *)e* and e*= 1 for x = 0,

L17=plax=[(feyerlax = [(fe "y dx = [fe =]y = 1/e.
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To see that 1 /e is the largest lower bound, we use functions f,(x) defined by
f(x)=(e""Ya)x for 0<x<a, f(x)=e*! for a<x<l.

Let m = e“'/a. Then

‘/(‘)llfa’(x) _fa(x)|dx=j:|m — mx|dx = m((l —g;—) = ea*l(l _%)

As a — 0, this expression approaches 1/e. The function f,(x) does not have a continuous
derivative, but one can smooth out the corner, keeping the change in the integral as small as one
wishes, and thus show that no number greater than 1 /e can be an upper bound.

B-1. (27,19,20,0,0,0,0,41, 15,20, 34,31)
The inequality holds if and only if ¢ = 1/2. For ¢ = 1/2,

e"+e_x=§ x2n <§ x*" 2
2 2T

for all x since 2n)!=2"n! forn =10,1,... .
Conversely, if the inequality holds for all x, then

e —1(e*+e )  (I+ex?+ )= (1+3x2+ ")
= lim

2

=0

N | —

0<lim =c—

x—0 xz x—0 X
and so ¢ = 1/2.
B-2. (19,4,11,4,2,0,3,8,10,41,53,52)

(a) v = 7. The seven vertices are V= (0,0,0), V;=(11,0,0), V,= (0,9,0), ¥;=(0,0,8), V,=
0,3,8), Vs=1(9,0,2), and V; = (4,7,0).

(b) e = 11. The eleven edges are VyVy, VoV,, VoVs, ViVs, ViV, VoVa, VaVe, ViVa, ViVs, V, Vs, and
ViV,
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(c) The desired (b, ¢) are those with b+ c=2and 2/3 <b<1. Let L(x, y,z) = bx + ¢y + z.
Since L is linear and (2, 5, 4) is on edge V,Vj, the maximum of L on S must be assumed at ¥, and
at ¥, and the conditions on b and ¢ are obtained from L(0,3,8) = L(4,7,0) = L(x, y, z), with
(x, y, z) ranging over the other five vertices.

B-3. (62,27,29,10,2,6,5,6,16,27,2,15)

We show that u,, > 0 for all n = 0 if and only if a = 3. Let Au,, = u,,, — u,. Then the recursion
(i.e., difference equation) takes the form (1 — A)u, = n2. Since n? is a polynomial, a particular
solution is

u,=(1—A) 'n2= (1 +A+ 8+ - )n*=n2+Q2n+1)+2=n>+2n+3.

(This is easily verified by substitution.) The complete solution is u, = n*+ 2n + 3 4 k-2", since
v, = k-2" is the solution of the associated homogeneous difference equation v, , — 2v, = 0. The
desired solution with uy,= a is u, = n®+ 2n + 3 + (a — 3)2". Since lim,_, ,[2"/(n*+ 2n + 3)]
= + 00, u, will be negative for large enough n if a — 3 < 0. Conversely, if a — 3 = 0, it is clear
that each u, > 0.

Alternatively, one sees that u, = a and u; = 24 and one can prove by mathematical induction
that

n—1
u,=2"a— X 2" '""kk* for n=2.
k=1
Hence u,> 0 for n = 0 if and only if a > 37Z}2 7' "%k? and this holds if and only if a = L,
where L = 3%_,27'"*k2. Let D mean d/dx. Then for |x| <1,
o0
(1-x)""'= 3 x*
k=0

I

D(1—x)""

(1-x)72= § kx*!
k=1
DU—x)2=201—x)"= S k(k— 1)x*2.
k=2

Let g(x) = 2x*(1 — x) >+ x*(1 — x) "2 Then L = g(1/2) = 3 and the answer is all a = 3.
B-4. (1,38,14,11,1,0,0,2,4,1, 40, 95)

The result we are asked to prove is clearly not true if | X| < 10. Hence we assume that | X'| = 10 or
that the 4; are distinct, which implies that | X| = 10.

Let X = {x,,..., x,,,}, with m = | X|, and let n, be the number of j such that x; isin 4,. Let N
be the number of ordered pairs (i, j) such that x; is in 4;. Then

N=n+n,+ - +n,= |4 + |4, + - +|A 16| > 1066(m/2) = 533m.

Hence one of the n,, say n;, exceeds 533.

Let By,..., B, be those sets 4; not containing x, and ¥ = {x,, x3,..., x,,}. Then s = 1066 —
n,< 532 and each | B,| > |Y|/2. We can assume that x, is in at least as many B, as any other x,
and let Cy,..., G, be the B, not containing x,. As before, one can show that 7 < 265.

We continue in this way. The 4th sequence of sets D,, ..., D, will number no more than 132.
The numbers of sets in the 5th through 10th sequences will number no more than 65, 32, 15, 7, 3,
and 1, respectively. Thus we obtain the desired elements x,..., x;, unless X has fewer than 10
elements.

B-s. (0,1,0,0,0,0,0,0,1,8,31,166)

The answer is 1 = ¢ (or 0 < ¢ < 1). The product fg of two nonnegative increasing continuous
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real-valued functions has the same properties. Using the fact that 0 < a < ¢ and 0 < b < d imply
ad + bc < ¢b + cd, one shows that fg is convex when f and g are convex. The function f(x) = x is
in §, for all ¢. If §, is closed under multiplication, x* is in S, and s0 2/9 = 1 — 2(4/9) + (1/9) =
1f4/9 — 2(1/9)] = 2t/9 or 1 = t. Conversely, when 1 = ¢, a lengthy, straightforward computation
verifies that S, is closed.

B-6. (1,0,0,0,0,0,0,0,1,17,20, 168)

Let Fy(x) =2y ,G(d, n)x". Then F\(x)=3%_,x"/n and F{(x) = 3%_,x". One sees that
Fj(x) = dF,_,(x)F{(x) by finding the coefficients of x"~' on both sides and using nG(d, n) =
d2-;G(d — 1,i — 1). Then an induction gives us F,(x) = [F,(x)]“. Now, for 1 <d < p, the
coefficient G(d, p) of x” in Fy(x) is the coefficient of x” in [S2Z¢*!x"/n]¢ and hence
G(d, p) = s/t with 5 and ¢ integers and 7 a product of primes less than p.

MATHEMATICAL NOTES

EDITED BY DEBORAH TEPPER HAIMO AND FRANKLIN TEPPER HAIMO

Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical
Sciences, University of Missouri, St. Louis, MO 63121.

ON McCARTY’S QUEEN SQUARES

CYRIL W. L. GARNER
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K18 5B6

AGNES M. HERZBERG
Department of Mathematics, Imperial College, London, England

1. Introduction. McCarty [3] introduced queen squares and posed questions regarding their
existence. These squares arise as an extension of the well-known problem of placing » sets of »
nonattacking queens on an 7 X n chess-board; see, for example, Rouse Ball and Coxeter [1].

According to McCarty, a queen square of order n is a square arrangement of the elements from
{1,2,...,n} in an n X n array such that each element occurs at most once in each row, column,
and diagonal, and elements i and j may not be placed |i — j| entries apart in any row, column, or
diagonal. Note that there may be empty grid squares.

McCarty represented the maximum number of nonempty entries that a queen square of order n
contains by M(n) and denoted by R(n) = n~2M(n) the ratio of M(»n) to the number of grid
squares of an n X n board. He gave a table of values of lower bounds of M(n) and R(n) for from
3 through 18.

In a recent paper [2], the authors defined Latin queen squares. These are the same as queen
squares except that no empty grid squares are allowed in the n X # array. They showed that Latin
queen squares exist for every prime number p greater than or equal to 11.

The purpose of this brief note is to exhibit the relationship between queen squares and Latin
queen squares and to show that, for # a prime greater than or equal to 11, M(n) = n? and
R(n) = 1. This answers the first of the following questions posed by McCarty:

(1) Can a latin square be constructed that is also a queen square? If yes, for which # is it possible? If no,
is there an upper bound on R(n)?
(2) Does there exist an algorithm for the maximal placement of the queens into the n-cube?



