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THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

L. F. KLOSINSKI
Department of Mathematics, University of Santa Clara, CA 95053

G. L. ALEXANDERSON
Department of Mathematics, University of Santa Clara, CA 95053

A.P. HILLMAN
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131

The following results of the forty-second William Lowell Putnam Mathematical Competition,
held on December 5, 1981, have been determined in accordance with the governing regulations.
This annual contest is supported by the William Lowell Putnam Prize Fund for the Promotion of
Scholarship, left by Mrs. Putnam in memory of her husband, and is held under the auspices of the
Mathematical Association of America.

The first prize, five thousand dollars, was awarded to the Department of Mathematics of
Washington University, St. Louis, Missouri. The members of its winning team were: Kevin P.
Keating, Edward A. Shpiz, and Richard A. Stong; each was awarded a prize of two hundred fifty
dollars.

The second prize, two thousand five hundred dollars, was awarded to the Department of
Mathematics of Princeton University, Princeton, New Jersey. The members of its team were:
Gregg N. Patruno, David P. Roberts, and Charles H. Walter; each was awarded a prize of two
hundred dollars.

The third prize, one thousand five hundred dollars, was awarded to the Department of
Mathematics of Harvard University, Cambridge, Massachusetts. The members of its team were:
Michael J. Larsen, Laurence E. Penn, and Michael Raship; each was awarded a prize of one
hundred fifty dollars.

The fourth prize, one thousand dollars, was awarded to the Department of Mathematics of
Stanford University, Stanford, California. The members of its team were: Richard J. Beigel,
Thomas C. Hales, and Kenneth O. Olum; each was awarded a prize of one hundred dollars.

The fifth prize, five hundred dollars, was awarded to the Department of Mathematics of the
University of Maryland, College Park, Maryland. The members of its team were Ravi B. Boppana,
Andrew E. Gelman, and Brian R. Hunt; each was awarded a prize of fifty dollars.

The five highest-ranking individual contestants, in alphabetical order, were David W. Ash,
University of Waterloo; Scott R. Fluhrer, Case Western Reserve University; Michael J. Larsen,
Harvard University; Robin A. Pemantle, University of California, Berkeley; and Adam Stephanides,
University of Chicago. Each of these students was designated a Putnam Fellow by the Mathemati-
cal Association of America and awarded a prize of five hundred dollars by the Putnam Prize
Fund.

The next five highest-ranking individuals, in alphabetical order, were Benji N. Fisher, Harvard
University; Brian R. Hunt, University of Maryland, College Park; Kevin P. Keating, Washington
University, St. Louis; Kenneth O. Olum, Stanford University; and Richard A. Stong, Washington
University, St. Louis. Each of these students was awarded a prize of two hundred fifty dollars.

The following teams, named in alphabetical order, received honorable mention: California
Institute of Technology, with team members Lance J. Dixon, Scott R. Johnson, Zinovy B.
Reichstein; Case Western Reserve University, with team members Scott R. Fluhrer, Barak A.
Pearlmutter, John D. Yeager; University of Toronto, with team members David M. Atwood, Ivo
Klemes, Philip A. Mansfield; University of Waterloo, with team members David W. Ash, A.
Michael O’Brien, Gordon J. Sinnamon; and Yale University, with team members Alan S.
Edelman, Paul N. Feldman, Ronald H. Weinstock.
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Honorable mention was achieved by the following thirty-four individuals, named in alphabeti-
cal order: Troy W. Barbee, Princeton University; Richard J. Beigel, Stanford University; Gary M.
Bernstein, Princeton University; Christopher J. Bishop, Michigan State University; Ravi B.
Boppana, University of Maryland, College Park; Eric D. Carlson, Michigan State University;
Stephen J. Curran, Beloit College; David L. Des Jardins, Massachusetts Institute of Technology;
Robert A. Ewan, Queen’s University, Kingston; Michael V. Finn, Harvard University; Nathaniel
E. Glasser, Yale University; Lin Goldstein, University of California, Berkeley; Fred W. Helenius,
Massachusetts Institute of Technology; Robert J. Holt, Stanford University; Irwin L. Jungreis,
Cornell University; Joe J. Kilian, Massachusetts Institute of Technology; Ivo Klemes, University
of Toronto; Mark K. Maginity, The Johns Hopkins University; Evan W. Morton, Harvard
University; Gregg N. Patruno, Princeton University; Mark G. Pleszkoch, University of Virginia;
Michael Raship, Harvard University; David P. Roberts, Princeton University; James R. Roche,
University of Notre Dame; Daniel J. Scales, Princeton University; Brian F. Sheppard, Harvard
University; Edward A. Shpiz, Washington University, St. Louis; Carlos T. Simpson, Harvard
University; Bruce K. Smith, Princeton University; John M. Sullivan, Harvard University; Pierre
Tremblay, Université Laval; Jerome V. Walsh, University of Illinois, Urbana-Champaign; Charles
H. Walter, Princeton University; David I. Wolland, Harvard University.

The other individuals who achieved ranks among the top 100, in alphabetical order of their
schools, were: University of Alabama, Richard B. Borie; University of Alberta, Michael P.
Lamoureux; Amherst College, F. Miller Maley; California Institute of Technology, Bradley W.
Brock, Lance J. Dixon, Scott R. Johnson, Forrest C. Quinn, Zinovy B. Reichstein; University of
California, Los Angeles, Paul T. Lockhart; University of California, Santa Barbara, Eric S.
Williams; Carleton College, Jon L. Shreve; Case Western Reserve University, Barak A. Pearl-
mutter, Susan G. Staples; University of Chicago, Daniel J. Goldstein; Colorado State University,
Tom S. Watts; Harvard University, Theodore M. Alper, William I. Chang, Zachary M. Franco,
David J. Montana, Laurence E. Penn, James G. Propp, Alfred D. Shapere, Gregory B. Sorkin,
Harvey Mudd College, Matthew G. Hudelson; Université Laval, Frederic M. Gourdeau; University
of Maryland, College Park, Andrew E. Gelman; Massachusetts Institute of Technology, Richard A.
Shapiro, Joseph L. Shipman; Michigan State University, Karl A. Dahlke, Lloyd A. Rawley;
University of New Brunswick, Christian Friesen; State University of New York, Buffalo, Pierre H.
Abbat; University of Pennsylvania, Joel Mick; Princeton University, Mark P. Kleiman, Mark A.
Prysant, Daniel S. Rokhsar, Stephen A. Vavisis; Rensselaer Polytechnic Institute, William John
Harte; Rice University, Christopher T. Delevoryas, Joe D. Warren; Stanford University, Thomas
C. Hales; University of Toronto, John J. Chew, John J. Im; Vanderbilt University, Hartwig P.
Arenstorf, Washington University, St. Louis, Bard Bloom, Karl F. Narveson; University of
Washington, Kin Y. Li; University of Waterloo, W. Ross Brown, Bev I. Cope, Mark N. Culp,
Herbert J. Fichtner, A. Michael O’Brien; University of Wisconsin, Madison, Chris S. Jantzen;
Yale University, Jeffrey W. Clark, Alan S. Edelman, Paul N. Feldman.

There were 2043 individual contestants from 343 colleges and universities in Canada and the
United States in the competition of December 5, 1981. Teams were entered by 251 institutions.

The Questions Committee for the forty-second competition consisted of K. B. Stolarsky
(Chairman), W. J. Firey, and D. A. Hensley; they composed the problems listed below and were
most prominent among those suggesting solutions.

PROBLEMS

Problem A-1
Let E(n) denote the largest integer k such that 5% is an integral divisor of the product 1'223% - .. n”. Calculate
E
lim (—:’) .
n—o n
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Problem A-2

Two distinct squares of the 8 by 8 chessboard C are said to be adjacent if they have a vertex or side in common.
Also, g is called a C-gap if for every numbering of the squares of C with all the integers 1,2,..., 64 there exist two
adjacent squares whose numbers differ by at least g. Determine the largest C-gap g.

Problem A-3
Find

X _ oy
lim [~ [ ’—e-——e—dxd]
i | [ e
or show that the limit does not exist.

Problem A-4

A point P moves inside a unit square in a straight line at unit speed. When it meets a corner it escapes. When it
meets an edge its line of motion is reflected so that the angle of incidence equals the angle of reflection.

Let N(T') be the number of starting directions from a fixed interior point P, for which P escapes within T units
of time. Find the least constant a for which constants b and c exist such that

N(T)<aT?>+bT+c¢
for all T> 0 and all initial points P,.
Problem A-5

Let P(x) be a polynomial with real coefficients and form the polynomial

Q(x) = (x> + ) P(x) P'(x) + x([P(x)]" + [P'(x)]’)-

Given that the equation P(x) = 0 has n distinct real roots exceeding 1, prove or disprove that the equation
Q(x) = 0 has at least 2n — 1 distinct real roots.

Problem A-6

Suppose that each of the vertices of A ABC is a lattice point in the (x, y)-plane and that there is exactly one lattice
point P in the interior of the triangle. The line AP is extended to meet BC at E. Determine the largest possible value
for the ratio of lengths of segments

|4P]

|PE| "

[A lattice point is a point whose coordinates x and y are integers.]

Problem B-1

Find
lim [i ) Zn‘, (5n* — 18h%k* + 5k“)].
nooo [ n® 52 k2

Problem B-2,

Determine the minimum value of

2 2 2
(r—1)2+(5—1) +(5—1) +(5—1)
r N t
for all real numbers r, s, twithl <r<s<t<4.

Problem B-3

Prove that there are infinitely many positive integers n with the property that if p is a prime divisor of n% + 3, then p
is also a divisor of k% + 3 for some integer k with k% < n.
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Problem B-4

Let ¥ be a set of 5 by 7 matrices, with real entries and with the property that r4 + sB € ¥V whenever 4, B € V and
r and s are scalars (i.e., real numbers). Prove or disprove the following assertion: If ¥ contains matrices of ranks 0, 1,
2, 4, and 5, then it also contains a matrix of rank 3.

[The rank of a nonzero matrix M is the largest k such that the entries of some k rows and some k columns form a
k by k matrix with a nonzero determinant.]

Problem B-5

Let B(n) be the number of ones in the base two expression for the positive integer n. For example, B(6) = B(110,)
= 2 and B(15) = B(1111,) = 4. Determine whether or not

o0
B(n)
exp Z —_—
(n=l n(n+1) )
is a rational number. Here exp(x) denotes e*.

Problem B-6

Let C be a fixed unit circle in the Cartesian plane. For any convex polygon P each of whose sides is tangent to C, let
N(P, h, k) be the number of points common to P and the unit circle with center at (%, k). Let H(P) be the region
of all points (x, y) for which N(P, x, y) > 1 and F(P) be the area of H(P). Find the smallest number u with

F(P)ffN(P x,y)dxdy <u

for all polygons P, where the double integral is taken over H(P).

In the 12-tuple (7,9, no,. .., 1y, n_,) following each problem number below, n, for 10 > i > 0
is the number of students among the top 209 contestants achieving i points for the problem and
n_, is the number of those not submitting solutions.

SOLUTIONS

A-1. (33,16, 13,6, 0,0, 0, 5, 23, 65, 39, 9)

We show that the limit is 1/8. Let T(m)=1+2+ --- + m = m(m + 1)/2, [x] denote the
greatest integer in x, h = [logsn], and e, be the fract1ona1 part (n/5) — [n/5'] for 1 <i < h.
Then

E(n) = ST([n/S]) + S*T([n/5%]) + - - + 5"T([n/5"])
2E(n) = 5([n/51 + [n/5]) + 5%([n/5%]7 + [n/52]) + -+~ + 5" ([n/5"]" + [n/5"])

2 2 2
B e SR ) R R IRt T
E(m) _1(1 1 1\ h _etet-+e
n? 215 52 5h 2n n
’+5(e,2—e1 + - +5h( —eh)
2n?

Since 5" < n < 5"*!'and 0 < e, < 1, one sees that #/n — 0 and E(n)/n> > 1/8 as n - oo.
A-2. (86,17,4,0,1, 1,0, 0, 28, 2, 24, 46)

For any numbering, one can go from the square numbered 1 to the square numbered 64 in 7 or
fewer steps, in each step going to an adjacent square; thus (64 — 1)/7 = 9 is a C-gap. It is the
largest C-gap since with coordinates (a, b), 1 <a <8 and 1 < b < 8, for the squares we can
number (a, b) with 8(a — 1) + b and thus find that no number greater than 9 is a C-gap.
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A-3. (1,0,5,0,0,0,0,0, 4, 14, 64, 121)

Let G(t) be the double integral. Then
lim [G(¢)/e'] = lim [G/(¢)/¢’]
t— 00 t—= o0

by L’Hopital’s Rule. One finds that

t t

, te* — e te¥ —e  _rie*—e
G(t)——f0 x—tdx+f0 y_tdy—ZfO x—tdx'

Then using e* = e[1 + (x — ¢) + (x — t)?/2! + --- ], one sees that e ‘G'(t) = o0 as t = oo
since for sufficiently large ¢,

G'(t) te* ! — 1 tl —e™” t] —e™” -1
= dx = dy > dy>(1—¢e"")logt.
e L e e [ ot

A-4. (1, 10,9, 0,0, 0, 0, 20, 37, 17, 21, 94)

Set up coordinates so that a vertex of the given unit square is (0, 0) and two sides of the square are
on the axes. Using the reflection properties, one can see that P escapes within 7 units of time if
and only if the (infinite) ray from P,, with the direction of the first segment of the path, goes
through a lattice point (point with integer coordinates) within 7T units of distance from P,. Thus
N(T) is at most the number L(T') of lattice points in the circle with center at P, and radius 7.
Tiling the plane with unit squares having centers at the lattice points and considering areas, one
sees that

N(T) < L(T) <= [T+ (V2 12)]".

Hence there is an upper bound for N(T') of the form 772 + bT + ¢, with b and ¢ fixed. When just
one coordinate of P, is irrational,

N(T)=L(T) > »[T - (V2 /2)]".

This lower bound for N(T) exceeds aT? + bT + c for sufficiently large 7'if @ < =; hence « is the
desired a.

A-5. (3,3,9,0,0,0,0,0, 10, 6, 49, 129)
We show that Q(x) has at least 2n — 1 real zeros. One finds that Q(x) = F(x)G(x), where

F(x)=P'(x)+xP(x)= e_"z/z[e"z/zP(x)]’, G(x) =xP'(x)+ P(x) =[xP(x)].

We can assume that P(x) has exactly n zeros a; exceeding 1 with 1 < g, <a, < --- <a, It
follows from Rolle’s Theorem that F(x) has n — 1 zeros b, and G(x) has n zeros ¢; with

l<ag <b <ay<by<:---<b,_,<a, 0<c¢<ag<c¢g<a<--<c¢<a,.
If b, # ¢, for all i, the b’s and ¢’s are 2n — 1 distinct zeros of Q(x). So we assume that
b, = ¢;., = r for some i. Then

P'(r)+rP(r)=0=rP'(r)+ P(r)

and so (r?> — 1)P(r) = 0. Since r = b, > 1, P(r) = 0. Since a, < r < a,, ,, this contradicts the
fact that the a’s are all the zeros exceeding 1 of P(x). Hence Q(x) has at least 2»n — 1 distinct
real zeros.

A-6. (1,0,1,1,0,0,0,0, 17, 9, 45, 135)
Treating each point X of the plane as the vector AX with initial point at 4 and final point at X, let
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L=(B+C)/2,M=C/2, and N=B/2
(be the midpoints of sides BC, AC, and AB). Also let
S=QL+M)/3=(B+C+M)/3,T=(Q2L+ N)/3
=(B+C+N)/3,0=2P—-B, and R=3P-B-C.

Clearly Q and R are lattice points. Also Q + P and R #+ P since Q = P impliesP = Band R = P
implies that P is the point L on side BC. Hence Q is not inside A4ABC and this implies that P is
not inside ANBL since the linear transformation f with f(X) = 2X — B translates a doubled
ANBL (and its inside) onto AABC (and its inside). Similarly, P is not inside AMCL. Using the
mapping g(X) = 3X — B — C and the fact that R is not inside A LMN, one finds that P is not
inside ALST. Since the distance from A4 to line S7 is 5 times the distance between lines S7" and
BC, it follows that |AP|/|PE| < 5. This upper bound 5 is seen to be the maximum by
considering the example with 4 = (0,0), B = (0,2), and C = (3,0) in which P = (1,1) = T is the
only lattice point inside AABC and |AT|/|TE| = 5.

B-1. (78, 19, 33,0, 5,0, 0, 0, 15, 11, 33, 15)
Let S, (n) = 1¥ + 2k + ... + n*. Using standard methods of calculus texts one finds that
S,(n) = (n*/3) + (n*/2) + an
and
Sy(n) = (n°/5) + (n*/2) + bn® + cn? + dn,

with a, b, ¢, d constants. Then the double sum is

10nS,(n) — 18[S,(n)) = 2nS + 5n° + ---) = (2n® + 6n° + -+ ) = —n + ---
and the desired limit is —1.
B-2. (37,1, 10,0, 0, 0,0, 0, 6, 9, 123, 23)

First we let 0 < @ < b and seek the x that minimizes

f(x)= (g—— 1)2 + (%— l)zona <x<b.

Let x/a = z and b/a = c. Then

2 c 2
f() =g(z)= (=1 + (S -1).
Now g’(z) = 0 implies
24—t cz—ct=(z22-c)(2?—z+¢)=0;
the only positive solution is z = Ve.Since0 <a<b,c> 1,/c > 1, and
g(1)=g(e)=(c~1)" = (Ve = 1)°(Ve +1)">2(Vc - 1)" = g(Ve).

Hence the minimum of g(z) on 1 < z < ¢ occurs at z = V. It follows that the minimum for f(x)
on a < x < b occurs at x = a\/b/7a = yYab . Then the minimum for the given function of r, s, ¢
occurs with r = Vs, t = V4s = 2r,ands = Vrt = /2. These imply that r = V2,5 =2,1t=2/2.
Thus the desired minimum value is 42 — 1)2 = 12 — 8y2.

B-3. (5,4,1,0,0,0,0,0, 3,0, 56, 140)
As m ranges through all nonnegative integers,
n=(m*>+m+2)(m*>+m+3)+3
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takes on an infinite set of positive integral values. Let f(x) = x? + 3. Examination of {f(m)) =
3,4,7,12,17,28,39,52,67,84, ... leads one to conjecture that

FO)f(x+ 1) =f[x(x+1)+3]=f(x2+ x + 3).
This is easily proved. Using this property and the above relation between m and n, one has
f(n)y=f(m*+m+2)f(m*+m+3)=Ff(m?>+m+2)f(m)f(m+1).
Thus p|f(n) with p prime implies that p|f(k) with k equal to m, m + 1, or m? + m + 2. Since
each of these possibilities for k satisfies k? < n, the desired result follows.
B-4. (38,4,3,1,0,0,0, 1, 3, 6, 28, 125)
Let M = M(a, b, c) denote the 5 by 7 matrix (a,;) with
an=a,ayp=ap=ay=ass=b,as=ay=c,

and a,; = 0 in all other cases. Then the set V of all such M (with a, b, c arbitrary real numbers) is
closed under linear combinations. Also, M(0,0,0), M(1,0,0), M(0,0, 1), M(0,1,0), and M(1,1,0)
have ranks 0, 1, 2, 4, and 5, respectively. But no M in V has rank 3 since b # 0 implies that the
rank is 4 or 5 and b = O forces the rank to be 0, 1, or 2.

B-5. (7,10,7,6,3,1,1,3,2,6, 49, 114)
If n has d digits in base 2, 27! < n and so
B(n)<d<1+log,n.

This read11y implies that ¥°_,[B(n)/n(n + 1)] converges to a real number S. Hence the
manipulations below with convergent series are allowable in the two solutions which follow.
Each n is uniquely expressible as ny + 2n, + 2%n, + --- with each n; in (0,1} (and with
n, = 0 for all but a finite set of /). Since
1+24224 .- 4271 =211,

one sees that n, = 1 if and only if # is of the form k& + 2° + 2'*!j with kin {0, 1,..., 2" — 1} and j
in{0,1,2,... ) Thus

1
Zo (k+27+ 275 (1 + k+ 27+ 2*Y).

Using 1/s(s + 1) = 1/s — / s+ 1) the innermost sum telescopes and

1 1
5 - zz[ [-£3 £
i=0 j=0 2j) 2'(2+21) i=0 2" j=
Since it is well known that 1 — £+ 41— 41+ --- =1n2,

4
0
S = ( Y 2“')ln2 =2In2 = In4

and e° is the rational number 4.
Alternatively, we note that B(2m) = B(m), BQm + 1) =1+ B(2m) = 1 + B(m).

Then
& B(n) &  Bem+1)
S= L _Z(2m+1)(2m+2)

s n(n+1) =,

B(2m)
1 2m(2m + 1)

+

3
I D8
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= 1+ B(m) i B(m)
B Z=O Qm+ 1)2m +2) * Z L 2m(2m + 1)
3 1 + % Bm) 1

T 2, Cm+ D2m+2) 2m (2m 0 T emr)em+2)

0
—n241 % M=1n2+§.
2 2 m(m+1) 2

Hence S/2 = 1In2, S = In4, and exp(S) is the rational number 4.
B-6. (10,0, 2,0,0,0,0,0,0, 7, 52, 138)

Let L = L(P) be the perimeter of P. One sees that H( P) consists of the region bounded by P, the
regions bounded by rectangles whose bases are the sides of P and whose altitudes equal 1, and
sectors of unit circles which can be put together to form one unit circle. Hence

F(P)=(L/2)+L+a=a+3L/2.
If A and B are two consecutive vertices of P, the contribution of side AB to the double integral

I is double the area of the region (of the figure) bounded by the unit semicircles with centers at 4
and B and segments CD and EF such that ABCD and ABEF are rectangles and |AD| = 1 = |AF|.

vas

C

B

N

F E

FiG. 1.

One doubles this area because there is a symmetric region bounded by CD, EF, and the other
halves of the unit circles centered at A and B. The overlap of the two regions counts twice. By
Cavalieri’s slicing principle, this contribution of side AB to I is 4 times the length of 4B. Hence
I=4L and
I 4L 8
F(P) w+3L/2 3+ (2w/L)’

One can make L arbitrarily large (e.g., by letting P be a triangle with two angles arbitrarily close
to right angles). Hence the desired least upper bound is 8/3.




