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we have
C=D,;+(2n —n+(m' —m)(k* + 1))(k* k) +(n—n"+ m)(0,k* + k).
Thus, C € L, if and only if D;; € L,. Busy computing yields
Dy=P, Dy=P, Dy=P—(k?k), Dy=P +(k*k),
Dy =Py, Dyp=P,, Dy=P,—(k* k), Dy=P +(k?k),
Dy =Py +(k* k), Dy =Py +(k* k), Dy3=P;, Dsy=P +2k k),
Dy =P, —(k*,k), Dyp=P,—(k> k), Dy=P,~2(k* k), Dy=P,

showing that D; ; € L, for all i and j.

It remains to show that L, is the (2, 90°)-closure H, of the points P; = (0,0) and P, = (1,0).
By the first part of the proof it suffices to show that H, contains L,. Of course, P;, P, € H,.
Since L, is the union of the images of S = {P,,..., Py} under all translations defined by the
vectors

{n(4,2) + m(0,10); n,m € Z},

it suffices to show that S — (4,2) € H, and S + (0,10) € H,. This entertaining construction is
left to the reader.

The reader is invited also to devise and investigate similar geometric closure properties of plane
(and higher-dimensional) sets.
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The following results of the forty-fourth William Lowell Putnam Mathematical Competition,
held on December 3, 1983, have been determined in accordance with the governing regulations.
This annual contest is supported by the William Lowell Putnam Prize Fund for the Promotion of
Scholarship, left by Mrs. Putnam in memory of her husband, and is held under the auspices of the
Mathematical Association of America.

The first prize, five thousand dollars, was awarded to the Department of Mathematics of the
California Institute of Technology, Pasadena, California. The members of its winning team were:
Bradley W. Brock, Charles J. Cuny, and Alan G. Murray; each was awarded a prize of two
hundred fifty dollars.

The second prize, two thousand five hundred dollars, was awarded to the Department of
Mathematics of Washington University, St. Louis, Missouri. The members of its team were: Paul
H. Burchard, Edward A. Shpiz, and Richard A. Stong; each was awarded a prize of two hundred
dollars.
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The third prize, one thousand five hundred dollars, was awarded to the Department of
Mathematics of the University of Waterloo, Waterloo, Ontario, Canada. The members of its team
were: David W. Ash, W. Ross Brown, and Bev 1. Cope; each was awarded a prize of one hundred
fifty dollars.

The fourth prize, one thousand dollars, was awarded to the Department of Mathematics of
Princeton University, Princeton, New Jersey. The members of its team were: Gregg N. Patruno,
Daniel J. Scales, and Kevin M. Walker; each was awarded a prize of one hundred dollars.

The fifth prize, five hundred dollars, was awarded to the Department of Mathematics of the
University of Chicago, Chicago, Illinois. The members of its team were Keith A. Ramsay, Michael
P. Spertus, and David S. Yuen; each was awarded a prize of fifty dollars.

The five highest-ranking individual contestants, in alphabetical order, were David W. Ash,
University of Waterloo; Eric D. Carlson, Michigan State University; Noam D. Elkies, Columbia
University; Michael J. Larsen, Harvard University; and Gregg N. Patruno, Princeton University.
Each of these students was designated a Putnam Fellow by the Mathematical Association of
America and awarded a prize of five hundred dollars by the Putnam Prize Fund.

The next five highest-ranking individuals, in alphabetical order, were Thomas O. Andrews,
Yale University; Joel Friedman, Harvard University; Alan G. Murray, California Institute of
Technology; Richard A. Stong, Washington University, St. Louis; and David S. Yuen, University
of Chicago. Each of these students was awarded a prize of two hundred fifty dollars.

The following teams, named in alphabetical order received honorable mention: University of
Alberta, with team members Arthur B. Baragar, Robert P. Morewood, and David S. Salopek;
Harvard University, with team members Zachary M. Franco, Joel Friedman, and Michael J.
Larsen; Memorial University of Newfoundland, with team members Quoc T. Pham, Michael J.
Sandys-Wunsch, and Arthur P. Smith; Queen’s University, with team members Neale Ginsburg,
Teddy Hsu, and Michael J. Swain; and Yale University, with team members Thomas O. Andrews,
Alan S. Edelman, and Nathaniel E. Glasser.

Honorable mention was achieved by the following thlrty-four md1v1duals, named in alphabeti-
cal order: Bruce W. K. Brandt, Harvard University; Bradley W. Brock, California Institute of
Technology; W. Ross Brown, University of Waterloo; Paul H. Burchard, Washington University,
St. Louis; Pang-Chieh Chen, California Institute of Technology; John J. Chew, University of
Toronto; Charles J. Cuny, California Institute of Technology; David B. Delaney, Case Western
Reserve University; Stephen A. DiPippo, Brown University; Yong Yao Du, University of
Waterloo; Benji N. Fisher, Harvard University; Daniel J. Goldstein, University of Chicago;
Frederic M. Gourdeau, Université Laval; Everett W. Howe, California Institute of Technology;
Paul S. Hsieh, Massachusetts Institute of Technology; Teddy Hsu, Queen's University; Jung C.
Im, California Institute of Technology; Russell G. Impagliazzo, Wesleyan University; Eric H.
Kawamoto, California Institute of Technology; Richard W. Kenyon, Rice University; Gary R.
Lawlor, Brigham Young University; Stephen T. Mark, Yale University; David I. Mclntosh,
University of Waterloo; Robert P. Morewood, University of Alberta; Howard M. Pollack,
Harvard University; Keith A. Ramsay, University of Chicago; James R. Roche, University of
Notre Dame; James R. Russell, Massachusetts Institute of Technology; Daniel J. Scales,
Princeton University; Arthur P. Smith, Memorial University of Newfoundland; Christopher R.
Stover, Swarthmore College; John M. Sullivan, Harvard University; James C. Yeh, Princeton
University; and Thomas M. Zavist, Rice University.

The other individuals who achieved ranks among the top 101, in alphabetical order of their
schools, were: University of Alberta, Arthur B. Baragar; University of British Columbia,
Lawrence D. Hammick, Thomas R. Stevenson; California Institute of Technology, Christian G.
Bower, Jonathan S. Shapiro; University of California, Davis, Michael P. Quinn; University of
California, San Diego, Peter M. De Marzo; University of California, Santa Barbara, Emerson S.
Fang, John R. Kelly; Case Western Reserve University, Magnus R. Karlsson, Kevin E. Kelso;
University of Chicago, Geoffrey R. Harris; Colorado State University, Jorg A. Brown; The
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Cooper Union, Tsz Mei Ko, Harvard University, Frederick R. Adler; Glen D. Ellison, Alfred D.
Shapere, David Wolland, David T. Wu; Harvey Mudd College, Arthur A. Middleton; University
of Illinois, Urbana-Champaign, Eric K. Lossin; Université Laval, David Bernier; University of
Maryland, Baltimore County, Gary S. Katzenberger, Massachusetts Institute of Technology,
Jonathan W. Aronson, Andrew E. Gelman, Chun-Nip Lee, Warren D. Smith; Memorial Univer-
sity of Newfoundland, Michael J. Sandys-Wunsch; Michigan State University, Erin J. Schram;
University of Michigan, Ann Arbor, Fred I. Diamond; University of New Brunswick, Christian
Friesen; University of North Carolina, Chapel Hill, Leick D. Robinson; Northwestern University,
Wayne W. Wheeler; Oberlin College, Mark R. Hanisch, Iwan Pranata; University of Pennsyl-
vania, Mark E. Banilower, William A. Graham; Princeton University, Troy W. Barbee 111, Rama
R. Kocherlakota, Burt J. Totaro, Stephen A. Vavasis, Kevin M. Walker; Queen’s College of the
City University of New York, Boris Aronov; Rice University, Garrett T. Biehle; Rose-Hulman
Institute of Technology, Daniel W. Johnson; Stanford University, Washington Taylor; University
of Texas, Austin, Andrew Chin; University of Utah, Eric M. Weeks; Washington University, St.
Louis, William H. Paulsen, Edward A. Shpiz; University of Waterloo, Todd A. Cardno, Bev I.
Cope, Charles S. A. Timar; University of Wisconsin, Madison, Chris S. Jantzen, John H.
Rickert; University of Wisconsin, Oshkosh, Douglas G. Kilday, and Yale University, Alan S.
Edelman.

There were 2055 individual contestants from 345 colleges and universities in Canada and the
United States in the competition of December 3, 1983. Teams were entered by 256 institutions.

The Questions Committee for the forty-fourth competition consisted of Douglas A. Hensley
(Chairman), Melvin Hochster, and Bruce Reznick; they composed the problems listed below and
were most prominent among those suggesting solutions.

PROBLEMS

Problem A-1

How many positive integers # are there such that » is an exact divisor of at least one of the numbers

10%0,20307

Problem A-2

The hands of an accurate clock have lengths 3 and 4. Find the distance between the tips of the hands when that
distance is increasing most rapidly.

Problem A-3

Let p be in the set {3,5,7,11,...} of odd primes and let
F(n)=1+2n+3n>+ - +(p—-1n? 2
Prove that if ¢ and b are distinct integers in {0,1,2,..., p — 1} then F(a) and F(b) are not congruent modulo p,
that is, F(a) — F(b) is not exactly divisible by p.
Problem A-4

Let k be a positive integer and let m = 6k — 1. Let
2k-1

stmy= X (-3 1).

Jj=1
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For example with k = 3,
1 17 17 1
san = () -(¥)+(9)-(1) + (1)

!
Prove that S(m) is never zero. [As usual, (’;’) = —r'(mm; o ]

Problem A-5

Prove or disprove that there exists a positive real number  such that [#"] — n is an even integer for all positive
integers n.
Here [x] denotes the greatest integer less than or equal to x.

Problem A-6

Let exp(¢) denote e’ and
x4
exp(x*)

F(x)= _/:j:_uexp(u3 +0) dvdu.

Find lim, , , F(x) or prove that it does not exist.

Problem B-1

Let v be a vertex (corner) of a cube C with edges of length 4. Let S be the largest sphere that can be inscribed in
C. Let R be the region consisting of all points p between S and C such that p is closer to v than to any other
vertex of the cube. Find the volume of R.

»

Problem B-2

.

For positive integers n, let C(n) be the number of representations of » as a sum of nonincreasing powers of 2,
where no power can be used more than three times. For example, C(8) = 5 since the representations for 8 are:

8, 444, 44+2+2, 4+2+1+1, and 2+2+2+1+1.

Prove or disprove that there is a polynomial P(x) such that C(n) = [P(n)] for all positive integers n; here [u]
denotes the greatest integer less than or equal to u.

Problem B-3

Assume that the differential equation
" +p(x)y" +q(x)y +r(x)y=0
has solutions y;(x), y,(x), and y;(x) on the whole real line such that
yE(x) +33(x) +yi(x) =1
for all real x. Let
/ 2 / 2 / 2

£(x) = (H(x)) + (3 (0) + (¥ (%))~

Find constants 4 and B such that f(x) is a solution to the differential equation

y' +dp(x)y = Br(x).

Problem B-4

Let f(n)=n+ [Vn ] where [x] is the largest integer less than or equal to x. Prove that, for every positive integer
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m, the sequence

m, f(m), f(f(m)),/(f(f(m))),...

contains at least one square of an integer.
Problem B-5

Let ||u|| denote the distance from the real number « to the nearest integer. (For example, [[2.8|| = .2 = [3.2||.)
For positive integers n, let
1 ,n
a, = ; j;

Determine lim,, _, ,a,. You may assume the identity

dx.

n
X

Problem B-6

Let k be a positive integer, let m = 2% + 1, and let r # 1 be a complex root of z” — 1 = 0, Prove that there
exist polynomials P(z) and Q(z) with integer coefficients such that

(P(r)* +(Q(r))* = -1.
SOLUTIONS

In the 12-tuples (749, 7g, . - . , Mg, 1_1) following each problem number below, n; for 10 > i > 0
is the number of students among the top 195 contestants achieving / points for the problem and
n_, is the number of those not submitting solutions.

A-1. (155,26,3,0,0,0,0,0,4,5,1,1)

For d and m in Z*= {1,2,3,...}, let d|m denote that d is an integral divisor of m. For m in
Z*, let 7(m) be the number of d in Z* such that d|m. The number of n in Z™ such that n|a or
n|b is

t(a) + 7(b) — 7(ged(a, b)).
Also 7(p°q") = (s + 1)(¢ + 1) for p,q,s,t in Z* with p and g distinct primes. Thus the desired
count is
,’.(240 . 540) + 7(260 . 530) _ 7(240 . 530) — 412 +61-31 —41-31
= 1681 + 620 = 2301.

A-2. (40,21,55,8,3,8,1,1,17,16, 22, 3)
A

o

Let OA be the long hand and OB be the short hand. We can think of OA4 as fixed and OB as
rotating at constant speed. Let v be the vector giving the velocity of point B under this
assumption. The rate of change of the distance between 4 and B is the component of v in the
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direction of AB. Since v is orthogonal to OB and the magnitude of v is constant, this component
is maximal when #OBA is a right angle, i.e., when the distance AB is V4% — 32 = /7.
Alternatively, let x be the distance 4B and 6 = £4OB. By the Law of Cosines,
- x2=13%2+4%2—-2-3-4cosf =25 — 24cos¥.
Since df/dt is constant, we may assume units chosen so that @ is also time ¢. Now

2x %%~ 24sing, & - 12600
df *df 25 —24cosl

Since dx/df is an odd function of 0, |dx/ds| is a maximum when dx/df is a maximum or a
minimum. Since dx/ds is a periodic differentiable function of 8, d*x/ds? = 0 at the extremes for

dx/ds. For such 0,
d*x  (dx\* (dx\®> _ 144sin’0
120050—x—-—d02 +(W) —(w) = ) .

X

Then

=2 —_ 2
e 12sin*0 _ 12 — 12 cos*d =25 — 24cosb,
cosf cos @

and it follows that

12 cos?0 — 25cosf + 12 = 0.

The only allowable solution for cosf is cosf =3/4 and hence x = V25 — 24cosf
=V25-18 = V7.

A-3. (72,15,7,1,0,0,0,0,3,6,14,77)

, F(n)=1+2n+3n*+ - +(p—-1)n??
nF(n)=n+2n*+---+(p—-2)n"2+(p—-n>""
Hence 1 — n)F(n)=(1 +n+n*+ -+ +n?"%) —(p — Dn?~! and similarly
(1-n)F(n)=1-n""1=A-n)(p—-Dn?t=1-p-n?"t+(p—1)n?.

Modulo p, n? = n by the Little Fermat Theorem and so (1 — n)*F(n) = 1 — n. If neither a nor
b is congruent to 1 (mod p), 1 —a# 1 — b 'and there are distinct reciprocals (1 — a)~' and
(1 — b)"'(mod p); then :

flay=(@~-a)", f(b)= (1= 1), f(a)  f(b)(mod p).
If one of a and b, say a, is congruent to 1, then b = 0 (mod p) and so f(b)=(1 —b) ' =0
(mod p) while

fla)=1+2+ - +(p—-1)=p(p—1)/2=0(mod p).
A-4. (15,2,7,3,0,1,0,3,4,5,29,126)

Let () = 0 for » > m and for r < 0. For i = 0,1,2 let

B = (1) 13) + (1 6) -, 2 +
We note that S(m) = T,(m) + 1. Since (r;) =(n-;l) _1_(;;::),

T,(m) = Th,(m—1) + Ty(m — 1), T;(m) = Ty(m - 1) + Ty(m — 1),
T,(m) = Ty(m —1) — T,(m — 1).
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Let the backwards difference operator v be giveﬁ by vf(n) = f(n) — f(n — 1). Then
vT(m) = Ty(m—1), vIy(m) = Ty(m — 1), vIy(m) = —T,(m — 1).
These imply that . o
v3iT,(m)=v*Ty(m—1)=vT,(m—2)= —T,(m— 3) form > 3.
Expanding v *T,(m), this gives us
(R) T,(m) =3[T,(m - 1) — T,(m — 2)] for m > 3.

When m = 6k — 1 with k > 1, we have m > 5. It then follows from (R) that 75 (m) = 0 (mod 3)
and hence S(m) = 1 (mod 3). Thus S(m) # 0.

A-5. (1,1,1,0,0,0,0,0,0,0,43,149)

Inductively we define a sequence of integers 3 = a,,a,,a3,... and associated intervals
I, =[(a)"", A+ a,)'”") such that a,>3", a,=n (mod 2), the sequence {(a,)*/"} is
nondecreasing, and I, 2 I,,;. When this has been done, {(a,)"/"}, being nondecreasing and
bounded, will have a Timit  which is in I, for all n. Then (a,)"" < u < (1 + a,)/” will imply
that a, < 4" <1+ a, and so [u"] = qa, —n(mod2)forall n.

Let a; = 3. Then I1 = [3,4). Let us assume that we have a,,a,,...,a, and I}, I,,..., I, with
the desired properties. Let

Jk _ [(ak)(k+1)/k (1 +>ak)(k+1)(/k)'
Then x is in I, if and only if x**! is in J,. The length of J, is
1+ @)™ ~(a)* > (1 + 0, - a)(a) =t > (35 =3,

Since the length of J,, is at least 3, J, contains an interval L, = [a;,,,1 + a,,,) for some integer
a, 1 which is congruent to k£ + 1 (mod 2). Let

1/(k+1 1/(k+1
I = [(ak+1) D 1+ agy) ).

Since x € I, if and only if x**! € J,, x € I, if and only if x**! € L,, and J, D L,, one sees
that I, 2 I, .. Also

k+1
aar > (a)“ " = (@] 5 300,
This completes the inductive step and shows that the desired u exists.
A-6. (0,1,1,0,0,0,0,2,5,3,38,145)

Under the change of variables s = v — v and ¢ = u + v, with the Jacobian d(u,v)/d(s,t) =
1/2, F(x) becomes I(x)/E(x) where
s\ (t—s)?
) +( 5 ) }dsdt

I(x)=/xflexp{(t+
—ff (—t3 —ts )dsdt

and E(x)=2x“exp(x?). Since I(x) and E(x) go to +o as x goes to + oo, one can use
L’Hopital’s Rule and we have lim, _,  F(x) = lim _, (I'/E’) where

I'= fx exp(%x3 + %xsz) ds = exp(x3/4)fx exp(3xs2/4) ds
- X

-X

and E’ = (6x~% — 8x %) exp(x?). In the integral for I, make the change of variable s = w/ Vx,
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ds = dw/ Vx , to obtain

,_exp(x’/4) rxx )
I'= — f_xﬁexp(3w /4) dw.

Now

r f x‘/j_exp(3w2/4) aw
lim F(x)= lm — = lm 2 .
x— 00 (x) x-w B xoo0 (6x7%% — 8x7%/%) exp(3x3/4)
We can, and do, use L’Hopital’s rule again to obtain
2(3/2) x*? 2/4
x—00 x~w [(27/2)x/% + - - | exp(3x2/4)

_2
5

B-1. (5,15,41,0,0,0,0, 64, 53,6,10,1)

The diameter of S must be 4 and S must be centered at the center of C. The set of points
inside C nearer to v than to another vertex w is the part of that half-space, bounded by the
perpendicular bisector of the segment vw, containing v which lies within C. The intersection of
these sets is a cube C’ bounded by the three facial planes of C through v and the three planes
which are perpendicular bisectors of the edges of C at v. These last 3 planes are planes of
symmetry for C and S. Hence R is one of 8 disjoint congruent regions whose union is the set of
points between S and C, excepting those on the 3 planes of symmetry. Therefore

8 vol(R) = vol(C) — vol(S) = 4* — %ZT- +23,

. vol(R) =8 — %’[

B-2. (33,5,5,2,0,1,0,0,32,13,43,61)

A representation for 27 is of the form
2n=ey+ 2e; + 4e, + -+ +2%¢,,
the ¢, in {0,1,2,3)}, and with e, in {0,2}. Then e, + 2e, + - -- +2¥"'¢, is a representation for
n if e, = 0 and is a representation for n — 1 if ey, = 2. Since all representations for n and n — 1
can be obtained this way,
C(2n)=C(n) + C(n-1).
Similarly, one finds that
c@2n+1)=C(n)+ C(n—1)=C(2n).
Since C(1) = 1 and C(2) = 2, an easy induction now shows that C(n) = [1 + n/2].

B-3. (76,5,4,2,0,0,0,3,0,3,5,97)

To satisfy the equation, each y; must have at least 3 derivatives. Here ¥ will be a sum with i
running over 1,2,3. We have £y? = 1 and X(y;)* = f. Differentiating, one has 22 y,y/ = 0 and
Y2y/y! = f. Differentiating Ly, y; = 0leads to Xy, y/” + X(y{)*> = 0so Ly,y/ = —f. Differenti-
ating this gives us Xy/y/” + Ly,y,”” = —f’. This and Xy/y/” = f'/2 leads to Ly,y,”" = —3f'/2.
Multiplying each term of

7"

W+l tel+tm=0
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by y; and summing gives us

=3f/2—pf+q-0+r=0.
Thus /" + (2/3)pf = (2/3)r and so A = 2/3 = B.
B-4. (41,21,19,3,0,0,3,0,6,4,17,81)

We can let m = k® + j, where k and j are integers with 0 < j < 2k, since the next square
after k% is k> + 2k + 1; let this j be the excess for m. We note that Vm]=k and f(m)=
k* + j + k. If the excess j is 0, m is already a square. Let A consist of the m’s with excess Jj
satisfying 0 < j < k and B consist of the m’s with k < j < 2k. If m isin B,

f(m)=k*+j+k=(k+1)+(j—k-1),
with the excess j — k — 1 for f(m) sétisfyingO <j—k—1<k+1,and hence f(m) is either a
square or is in A4. Thus it suffices to deal with the case in which m is in 4. Then [Vm + k] =k
and
f2(m) = f(f(m)) = f(m+ k) =m+ 2k = (k+1)* +(j - 1).

Hence f2(m) is either a square or an integer in 4 with excess smaller than that of m. Continuing,
one sees that f’(m) is a square for some r with 0 < r < 2.

B-5. (77,16,14,0,0,0,0,0,9, 4,16, 59)

By definition of a, and ||u]),

n—1
a,= ¥ l[f"/k (% = k)axs [ D g1 - ﬁ)dx]
k=1 1| 2n/Qr+D\ X ‘n/(k+l) ) X
=”_1{-1n2k+1_ 1,1 2k+2
Pt 2k 2k+1 2k+1 2k+1

n—1 2
Ty Gk+ 1) ln[

B 3.5 5 (2n-1) (2n-1)
i=12kk+2) '

4 4 6 (2n-2) 2n

Since

and In x is continuous for x > 0, lim,, _, 4, = In(4/7).
B-6. (3,0,0,1,0,0,0,1,1,20,16,153)
Since r#1 and r"—1=(r— (" '+ r" 2+ ... +1)=0, one has r” ! + pm2
+ -+ +1=0andso
“1=r(Q+r+r*+--- +rm?),
—1=r(1+r)QX+r2)A+r*)--- (1 + rm-072),
—1=(r+r)Q+r)Q+r*)--- 1+ rm072),

Since r + r? = r™*! + r? with m + 1 = 2(2*~! + 1), each of the factors in the last expression
for —1 is a sum of two squares. Their product can be expressed as a sum of two squares by
repeated application of the identity

(a®+ b*)(c® + d*) = (ac = bd )’ +(ad + bc)>.
This converts —1 into P? + Q2 with each of P and Q a polynomial in r with integer coefficients.



