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The William Lowell Putnam Mathematical Competition

LEONARD F. KLOSINSKI, Santa Clara University
G. L. ALEXANDERSON, Santa Clara University

LoReN C. LARSON, St. Olaf College

The following results of the forty-ninth William Lowell Putnam Mathematical
Competition, held on December 3, 1988, have been determined in accordance with
the governing regulations. This annual contest is supported by the William Lowell
Putnam Prize Fund for the Promotion of Scholarship, left by Mrs. Putnam in
memory of her husband, and is held under the auspices of the Mathematical
Association of America.

The first prize, $5,000, was awarded to the Department of Mathematics of
Harvard University. The members of the winning team were: David J. Moews,
Bjorn M. Poonen, and Constantin S. Teleman; each was awarded a prize of $250.

The second prize, $2,500, was awarded to the Department of Mathematics of
Princeton University. The members of the winning team were: Daniel J. Bernstein,
David J. Grabiner, and Matthew D. Mullin; each was awarded a prize of $200.

The third prize, $1,500, was awarded to the Department of Mathematics of Rice
University. The members of the winning team were: Hubert L. Bray, Thomas M.
Hyer, and John W. MclIntosh; each was awarded a prize of $150.

The fourth prize, $1,000, was awarded to the Department of Mathematics of the
University of Waterloo. The members of the winning team were: Frank M.
D’Ippolito, Colin M. Springer, and Minh-Tue Vo; each was awarded a prize of
$100.

The fifth prize, $500, was awarded to the Department of Mathematics of the
California Institute of Technology. The members of the winning team were: William
P. Cross, Robert G. Southworth, and Glenn P. Tesler; each was awarded a prize of
$50.

The five highest-ranking individual contestants, in alphabetical order, were David
J. Grabiner, Princeton University; Jeremy A. Kahn, Harvard University; David J.
Moews, Harvard University; Bjorn M. Poonen, Harvard University; and Ravi D.
Vakil, University of Toronto. Each of these students was designated a Putnam
Fellow by the Mathematical Association of America and awarded a prize of $500 by
the Putnam Prize Fund.

The next six highest-ranking individuals, in alphabetical order, were William P.
Cross, California Institute of Technology; Serge Elnitsky, Carleton University; Karl
M. Westerberg, Carnegie-Mellon University; Glen T. Whitney, Harvard University;
Sihao Wu, Yale University; and Joshua R. Zucker, Stanford University. Each was
awarded a prize of $250.

The following teams, named in alphabetical order, received honorable mention:
Brown University, with team members Peter H. Golde, Kevin S. McFarland, and
David J. Morin; University of California, Berkeley, with team members I-Lin Kuo,
Jordan Lampe, and David P. Moulton; Carnegie-Mellon University, with team
members Petros 1. Hadjicostas, Joseph G. Keane, and Karl M. Westerberg;
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Stanford University, with team members John C. Loftin, John A. Overdeck, and
Joshua R. Zucker; and Yale University, with team members Moses G. Klein,
Robert S. Manning, and William N. Nelson.

Honorable mention was achieved by the following thirty-eight individuals named
in alphabetical order: Thomas R. Amoth, Oregon State University; Tibor Beke,
Armand Hammer United World College; Daniel J. Bernstein, Princeton University;
David T. Blackston, Massachusetts Institute of Technology; Hubert L. Bray, Rice
University; Jackson A. Bross, Massachusetts Institute of Technology; Timothy K.
Callahan, University of Chicago; William Chen, Washington University, St. Louis;
David Cook, Harvard University; Matthew M. Cook, University of Illinois,
Urbana-Champaign; Peter H. Golde, Brown University; Thomas R. Hagedorn,
Princeton University; Graydon H. Hazenberg, University of Waterloo; Thomas M.
Hyer, Rice University; Joseph G. Keane, Carnegie-Mellon University; Moses G.
Klein, Yale University; Matthew A. Klimesh, University of Michigan, Ann Arbor;
Tal N. Kubo, Harvard University; John W. Mclntosh, Rice University; Christopher
J. Monsour, University of Maryland, College Park; David P. Moulton, University of
California, Berkeley; Matthew D. Mullin, Princeton University; Du Nguyen, Uni-
versity of Ottawa; John A. Overdeck, Stanford University; David L. Petry, Univer-
sity of Oregon; Edward R. Ratner, California Institute of Technology; Raymond M.
Sidney, Harvard University; Stephen A. Smith, University of Waterloo; Robert G.
Southworth, California Institute of Technology; Colin M. Springer, University of
Waterloo; Constantin S. Teleman, Harvard University; John S. Tillinghast, Univer-
sity of California, Davis; Minh-Tue Vo, University of Waterloo; Eric K. Wepsic,
Harvard University; Christopher S. Wilson, Stanford University; David Bruce
Wilson, Massachusetts Institute of Technology; John H. Woo, Harvard University;
and Japheth L. M. Wood, Washington University, St. Louis.

The other individuals who achieved ranks among the top 104, in alphabetical
order of their schools, were: Baylor University, Adrian Tanner; University of British
Columbia, Wayne J. Broughton; Brown University, David J. Morin; California
Institute of Technology, Ian Agol, Earl A. Hubbell, Russell A. Manning, Glenn P.
Tesler; California Polytechnic State University, Daniel L. Krejsa; University of
California, Berkeley, I-Lin Kuo, Jordan Lampe; University of California, Davis,
Rudolf Von Bunau; University of Chicago, Andrew S. Yeh; Cornell University,
Scott S. Benson; Emory University, Charles D. McDonell; Georgia Institute of
Technology, Jeffrey W. Herrmann; Harvard University, Todd A. Brun, Duff G.
Campbell, Leigh Chao, Roland B. Drier, Daniel D. Lee, David M. Maymudes,
Michael D. Mitzenmacher, Daniel S. Sage, Michael E. Zieve; Hofstra University,
Michael Cole; Iowa State Uni\versity, Brad W. Michael; Knox College, Peter F.
Schultz; Massachusetts Institute of Technology, Erik Ordentlich, Deniz Yuret;
Michigan State University, Steven D. Fischer, Jacob R. Lorch; University of
Michigan, Ann Arbor, Robert B. Doorenbos; University of Pennsylvania, Michael
Albert; Princeton University, Emory F. Bunn, Timothy Y. Chow, David C. Fox,
Rahul V. Pandharipande; Reed College, Nathaniel J. Thurston; University of
Rochester, Daniel B. Finn; St. Olaf College, James S. Larson; Stanford University,
Thomas H. Chung, John C. Loftin; Swarthmore College, Robert E. Marx; Univer-
sity of Texas, Austin, Douglas S. Hauge; University of Toronto, Edward J.
Doolittle; Washington University, St. Louis, Peter S. Shawhan; University of
Waterloo, Paulina Chin, Frank M. D’Ippolito, Michael Glaum, Simon H. Lee,
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David N. C. Tse; University of Wisconsin, Madison, David G. Radcliffe; Yale
University, Robert S. Manning, William M. Nelson; and Yeshiva University, Philip
T. Reiss.

There were 2096 individual contestants from 360 colleges and universities in
Canada and the United States in the competition of December 3, 1988. Teams were
entered by 257 institutions.

The Questions Committee for the forty-ninth competition consisted of Abraham
P. Hillman (Chair), Paul R. Halmos, and Gerald A. Heuer; they composed the
problems listed below and were most prominent among those suggesting solutions.

PROBLEMS

Problem A-1
Let R be the region consisting of the points (x, y) of the cartesian plane
satisfying both |x| — |y| < 1 and |y| < 1. Sketch the region R and find its area.

Problem A-2

A not uncommon calculus mistake is to believe that the product rule for
derivatives says that (fg) = f'g’. If f(x)= e*’, determine, with proof, whether
there exists an open interval (a, b) and a nonzero function g defined on (a, b) such
that this wrong product rule is true for x in (a, b).

Problem A-3
Determine, with proof, the set of real numbers x for which

i (lcscl - 1)"

n=1\1 n

converges.

Problem A-4

(a) If every point of the plane is painted one of three colors, do there necessarily
exist two points of the same color exactly one inch apart?

(b) What if “three” is replaced by “nine”?

Justify your answers.

Problem A-5
Prove that there exists a unique function f from the set R* of positive real
numbers to R™ such that

f(f(x)) =6x—f(x) and f(x)>0 forall x>0.

Problem A-6

If a linear transformation A on an n-dimensional vector space has n + 1
eigenvectors such that any »n of them are linearly independent, does it follow that A
is a scalar multiple of the identity? Prove your answer.
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Problem B-1

A composite (positive integer) is a product ab with @ and b not necessarily
distinct integers in {2, 3,4, ... }. Show that every composite is expressible as xy + xz
+ yz + 1, with x, y, and z positive integers.

Problem B-2
Prove or disprove: If x and y are real numbers with y > 0 and y(y + 1) <
(x + 1)% then y(y — 1) < x%

Problem B-3

For every n in the set Z*= {1,2,...} of positive integers, let r, be the minimum
value of |c — dy3] for all nonnegative integers ¢ and d with ¢ + d = n. Find, with
proof, the smallest positive real number g with r, < g for all n in Z™.

Problem B-4
Prove that if ¥°_,a, is a convergent series of positive real numbers, then so is
1
Zoo (an)n/(n+ ).

n=1

Problem B-5

For positive integers n, let M, be the 2n + 1 by 2n + 1 skew-symmetric matrix
for which each entry in the first n subdiagonals below the main diagonal is 1 and
each of the remaining entries below the main diagonal is —1. Find, with proof, the
rank of M,,. (According to one definition the rank of a matrix is the largest k£ such
that there is a k X k submatrix with nonzero determinant.)

One may note that

0 -1 -1 1 1

0 -1 1 1 0 -1 -1 1
M, = 1 0 -1 and M, = 1 1 0o -1 -1
-1 1 0 -1 1 1 0 -1
-1 -1 1 1 0
Problem B-6

Prove that there exist an infinite number of ordered pairs (a, b) of integers such
that for every positive integer ¢ the number at + b is a triangular number if and
only if ¢ is a triangular number.

(The triangular numbers are the ¢, = n(n + 1)/2 with n in {0,1,2,...}.)

SOLUTIONS

In the 12-tuples (nyq, n, ..., ny, n_,) following each problem number below, n,
for 10 > i > 0 is the number of students among the top 208 contestants achieving i
points for the problem and n_, is the number of those not submitting solutions.

A-1. (202,0,0,0,0,0,0,0,4,2,0,0)

The part of R in the first quadrant is bounded by x =0, y =0, x — y = 1, and
y = 1. This part is a trapezoid with vertices (0, 0), (1,0), (2,1), and (0,1) and area
3/2. Since (tx, £y) is in R when (x, y) is in R, the parts of R in the other
quadrants are obtained using symmetry about both axes, and consequently, the area
of R is 6.



692 LEONARD F. KLOSINSKI, G. L. ALEXANDERSON, LOREN C. LARSON [October

(=2,1) 21

(-1,0) jé%a,m

(=2,-1 @,-1

A-2. 174,1,7,1,0,0,0,3,3,0,15,4)

The function defined by g(x) = e*y2x — 1 has the property desired for 1/2 < a
< x < b and g(x) = e*/1 — 2x has the property for a < x <b <1/2.

To derive that result, consider the equation (fg)' = f'g’ and rewrite it in the
successive forms

f(x)g(x) + f(x)g'(x) = f(x)g'(x),
g(x) () /f(x)
g(x)  1-f(x)/f(x)
If f(x) = e*’ then we have
g(x)  —2x
g(x) T 1-2x
log|g(x)| = x + 1logl — 2x| + C,
where C is an arbitrary constant. If 1/2 < a < x < b, this has the form
g(x) = A4e2x - 1,
where A is an arbitrary positive real number. If ¢ < x < b < 1/2, it has the form
g(x) = Ae™1 - 2x.
A-3. (42,17,10,0,0,0,0,6,5, 3, 34,91)

Let
1 1
a,= —csc— — 1.
non
Then
1 \ 1
S S S U -1
nsin — nl— - —+ —— — ...
n (n 6n°> = 120n° )
1
= 1 1 -1
_—— — ..
6n?  120n*
1+ 1 1 1 1/1
= ——+— — _ — —
6n2 nzg(”) n2(6 + g(n)),
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where g(n) — 0 as n — oo. Hence, there exist positive real numbers ¢, d, and N
such that
1 1
c— <a,<d—, forn>N.
n n

Using the comparison and the p-test, one finds that Ya; converges for x > 1/2 and
diverges for 0 < x < 1/2. But it is easy to see that the series also diverges for x < 0.
Hence the answer is {x: x > 1/2}.

A-4. (45,29,2,2,1,25,11,0,3, 3,25, 62)

(a) The answer is yes. For the proof let 4 be an arbitrary point in the plane and
let ABC be an arbitrary equilateral triangle with side length 1 (where the units are
inches, of course) that has A as one of its vertices. If any two of 4, B, and C have
the same color, the construction is finished. If not, let A’ be the point obtained by
reflecting A through the line BC. If A’ has the same color as either B or C, the
construction is finished. If not, then 4 and A’ have the same color. Note that the
distance between A and A’ is V3, and that, in fact, any two points at distance y3
from one another can be obtained by making one of them a vertex of an equilateral
triangle of side length 1 and then reflecting it through the side opposite it.

The result so obtained implies that, for any initial point A, either the reflected
equilateral triangle argument finishes the desired construction for some B and C, or
else that every point at distance y3 from A has the same color as A. The set of
points such as A’, at distance y3 from 4, is a circle of radius v3; any chord of
length 1, of that circle, yields a pair of points of the same color exactly one inch
apart.

(b) The answer is no. For the proof, pave the plane with squares whose common
side length is chosen so that the diagonals are nearly 1 but not equal to 1; the
diagonal length 0.9 will do. If that length is used, then the side length of each square
is 0.9/ V2, which is somewhat greater than 0.63. Color one square with color #1,
color the eight squares adjacent to it with colors #2-#9, and then repeat,
throughout the plane, the coloring scheme of the large square (consisting of nine
small squares) so obtained. (For present purposes it doesn’t matter what consistent
convention is followed for the boundaries of the squares; one possibility is to let the
bottom and left boundaries of each square have the same color as the interior.)

The result is a nine-coloring of the plane in which no two points of the same
color are exactly one inch apart. Indeed, for any point at all, the points of the same
color are either within 0.9 inches from it or else farther than 2 X .63 = 1.26 inches.

A-5. (32,8,4,0,0,0,0,1,7,96,9, 51)

For arbitrary x > 0, let ayray, a,,... be defined by a, = x and a,,, = f(a,).
Then a,,, +a,,, — 6a,=0 for n=0,1,2,.... The characteristic roots of this
difference equation are —3 and 2. Hence a, = (—3)"c + 2"k for some constants ¢
and k. As a,,; = f(a,) > 0 for all n, we must have ¢ = 0 and so f(x) = 2x. This
unique f satisfies the conditions since it gives f(f(x)) = f(2x) = 4x = 6x — f(x)
and 2x > 0 for x > 0.

A-6. (59,14,10,7,0,0,0,0,5,0,21,92)
Yes, A must be a scalar multiple of the identity. Suppose that x,,x,,...,x, ., are
eigenvectors of A such that any n of them are linearly independent, with corre-
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sponding eigenvalues A;, A,,..., A, ;. Let B, = {x;,X,,...,X,,1} \{x;}. Then B,
is a set of n linearly independent vectors in an n-dimensional vector space, so B, is
a basis. With respect to B,, the transformation A is represented by a diagonal
matrix, diag(A;, Ay,..., A1, A;pp,..., A,). Thus, trace(A) = S — A,, where S is
the sum of the eigenvalues, S =A; + A, + --- +A,,,. But the trace of a linear
transformation is independent of the basis chosen. Thus,

S—A=8-A; foralli,j
A;=A; foralli,j

Let A be this common value. Then with respect to any of the bases B, A
corresponds to diag(A, A, ..., A), which is A times the identity.

B-1. (176,25,0,0,0,0,0,0,1,1,1,4)
Letting z = 1, we have

xp+xz+yz+l=xp+x+y+1=(x+1)(y+1)

and this gives us all the composite positive integers when x and y range over all the
positive integers.

B-2. (88, 38,30,0,0,0,0,0,26,4,18,4)
The desired conclusion is true for 0 < y < 1, so suppose y > 1. If (x + 1)? >
»(y + 1) then we may assume that x >0, and therefore x > {y(y+1) — 1

> {y(y — 1), and the result follows. (The last inequality follows from the easily
verified fact that for positive numbers a and b, Vab + 1 < (a + 1)(b + 1))

B-3. (20,16,17,2,0,0,0,0,52,33,27,41)

Let g = (1 + V3)/2. Since for each fixed value of n the sequence n,n — 1
—V3,n—2-2/3,..., —n/3 is an arithmetic progression with —2g as common
difference, there is a unique term x,, in it with —g < x, < g. Clearly r, = |x,|. Let
¢ > 0. By the pigeonhole principle, there exist a and b with a # b and |x, — x,| < &.
Let ¢ = |a — b|. In the sequence r,, r,,, 13,,... thereis an r,, such that g — e < r,, <
8. Hence g is the desired least upper bound of the r,.

B-4. (17,1,0,0,0,0,0,0,3,2,73,112)
Let S={n:a"/"*'<2a,}). f n&S, a?/"*! > 2a,, or equivalently 1/2 >
al=(/n*D = gl/n*1 which is the same as 1/2" > a”/"*1, It follows that

0
Ya/ < Yaymh+ Y 1/2" < .
n=1 nes n&S

B-5. (9,0,10,1,0,0,0,0.1,2,45,140)

Let u be a primitive kth root of 1, where k =2n + 1. For 1 < i<k, let L,
denote the column vector (1, u'~1, 420~V . 4*~DGE-D) The k by k matrix
whose ith column is L, is a Vandermonde matrix, so the L, are linearly independent
over the complex numbers. For 1 < i < k we have M, L, = ¢,L;, where c; is the
scalar dot product of L, with the first row of M,. Note that ¢, =0, but for
2<i<ke;=—Xitu00D 4 gk uU~DE"D 2 0, 1t follows that the vec-
tors {c,L,,...,cL,}, and hence the vectors {M,L,,...,M,L,}, are linearly
independent. But M, L, = ¢;L;, = 0, so M,, has rank 2n.
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B-6. (38,9,4,4,24,8,0,5,5,1,17,93)

Solution 1. It is easy to see that f;,,, =1+ 9, and that ¢;,=1¢,, ,=
0 (mod 3). This implies that (9, 1) is one of our ordered pairs. If the numbers a,,
and b,, are defined by
f(x)=9%+1, fO9x+1)=a,x+b,,...,
f(amx + bm) =a,41X + bm+1’
an easy induction on m shows that (a,,, b,) has the desired properties for m =
2,3,....

Solution 2. We show that the ordered pairs (8¢, + 1, ¢,) have the desired proper-
ties. Let T ={0,1,3,6,...} be the set of triangular numbers and Q =
{1,9,25,49,...) be the set of squares of odd integers. The equality (2n + 1)> =
8((n® + n)/2) + 1 implies that

t isin T if and only if 8 + 1 isin Q. (%)

Let¢t,=r(r+1)/2bein T and g = 8¢, + 1.

For the “if” part, let ¢ be in T. Since Q is closed under multiplication and 8¢ + 1
is in Q by (*), we see that

q(8t+1)=8qt+q=8qt + 8, +1=8(qt +¢,)+1
is in Q and hence ¢t + ¢, is in T by (*). This proves the “if” part.

For the “only if” part, let ¢ be an integer and gt + ¢, be in T. Then

8(qt+t,)+1=8[(8:,+ 1)t +¢t]+1=(8,+1)(8 +1)

is in Q. Since 8¢ + 1 is an integer and is the quotient of squares in Q, it follows that
8¢ + 1 itself is in Q. Then (*) tells us that ¢ is in 7. This completes the proof.



