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The Fifty-First William Lowell Putnam Mathematical Competition

Leonarp F. Krosinski, Santa Clara University
GERALD L. ALEXANDERSON, Santa Clara University
LoreN C. Larson, St. Olaf College

The following results of the fifty-first William Lowell Putnam Mathematical
Competition, held on December 1, 1990, have been determined in accordance with
the governing regulations. This annual contest is supported by the William Lowell
Putnam Prize Fund for the Promotion of Scholarship, left by Mrs. Putnam in
memory of her husband, and is held under the auspices of the Mathematical
Association of America.

The first prize, $5,000, was awarded to the Department of Mathematics of
Harvard University. The members of the winning team were: Jordan S. Ellenberg,
Raymond M. Sidney, and Eric K. Wepsic; each was awarded a prize of $250.

The second prize, $2,500, was awarded to the Department of Mathematics of
Duke University. The members of the winning team were Jeanne A. Nielsen, Will
A. Schneeberger, and Jeffrey M. Vanderkam; each was awarded a prize of $200.

The third prize, $1,500, was awarded to the Department of Mathematics of the
University of Waterloo. The members of the winning team were Dorian Birsan,
Daniel R. L. Brown, and Colin M. Springer; each was awarded a prize of $150.

The fourth prize, $1,000, was awarded to the Department of Mathematics of
Yale University. The members of the winning team were Thomas Zuwei Feng,
Andrew H. Kresch, and Zhaoliang Zhu; each was awarded a prize of $100.

The fifth prize, $500, was awarded to the Department of Mathematics of
Washington University. The members of the winning team were William Chen,
Adam M. Costello, and Jordan A. Samuels; each was awarded a prize of $50.

The five highest ranking individual contestants, in alphabetical order, were
Jordan S. Ellenberg, Harvard University; Jordan Lampe, University of California,
Berkeley; Raymond M. Sidney, Harvard University; Ravi D. Vakil, University of
Toronto; and Eric K. Wepsic, Harvard University. Each of these was designated a
Putnam Fellow by the Mathematical Association of America and awarded a prize
of $500 by the Putnam Prize Fund.

The next seven highest ranking individuals, in alphabetical order, were Andrew
H. Kresch, Yale University; Samuel A. Kutin, Harvard University; Royce Y. Peng,
Harvard University; Eric M. Rains, Case Western Reserve University; Jeffrey M.
Vanderkam, Duke University; Samuel K. Vandervelde, Swarthmore College; and
Michael E. Zieve, Harvard University. Each was awarded a prize of $250.

The following teams, named in alphabetical order, received honorable mention:
California Institute of Technology, with team members Tien-Yee Chiu, Russell A.
Manning, and Robert G. Southworth; the University of California, Berkeley, with
team members Brian J. Birgen, Jordan Lampe, and Thomas S. Lumley; Mas-
sachusetts Institute of Technology, with team members Christos Athanasiadis,
Andrew Chou, and David B. Wilson; Stanford University, with team members,
Daniel P. Cory, Gregory G. Martin, and Andras Vasy; and Swarthmore College,
with team members Olaf A. Holt, Robert E. Marx, and Samuel K. Vandervelde.

Honorable mention was achieved by the following thirty-five individuals named
in alphabetical order: Eric M. Boesch, University of Maryland, College Park;
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720 KLOSINSKI, ALEXANDERSON, AND LARSON [October

Hubert L. Bray, Rice University; Daniel R. L. Brown, University of Waterloo;
Michael J. Callahan, Harvard University; David B. Carlton, Harvard University;
Helmut R. Celina, Davidson College; Nickolai I. Chavdarov, Brandeis University;
William Chen, Washington University, St. Louis; Mark T. Chrisman, University of
California, Davis; Bryan F. Clair, University of California, Berkeley; Brian D.
Conrad, Harvard University; Daniel B. Finn, University of Rochester; Joshua B.
Fischman, Princeton University; Mikhail Grinberg, Massachusetts Institute of
Technology; Alex Gurevich, University of Maryland, College Park; Richard S. Kiss,
Simon Fraser University; John C. Loftin, Stanford University; Gregory G. Martin,
Stanford University; David K. McKinnon, Harvard University; Jeanne A. Nielson,
Duke University; David M. Patrick, Carnegiec Mellon University; Alexander R.
Pruss, University of Western Ontario; Jordan A. Samuels, Washington University,
St. Louis; Will A. Schneeberger, Duke University; Lawren M. Smithline, Harvard
University; Robert G. Southworth, California Institute of Technology; Colin M.
Springer, University of Waterloo; Jun Teng, California Institute of Technology;
Andras Vasy, Stanford University; Martin M. Wattenberg, Brown University;
David B. Wilson, Massachusetts Institute of Technology; Michael P. Wolf, Harvard
University; and John H. Woo, Harvard University.

The other individuals who achieved ranks among the top 98, in alphabetical
order of their schools, were: Boston University, Michael G. Szydlo; University of
British Columbia, Gregory F. Wellman; University of Calgary, Geoffrey T. Falk;
California Institute of Technology, Ian Agol, Alan I. Knutson, William M. Watson;
University of California, Berkeley, Stephen P. Bard, Thomas S. Lumley, Max L.
Shireson, Zheng Yin; Carleton University, Adam M. Logan; Carnegic Mellon
University, Sanjay Khanna; University of Chicago, David J. Pollack, Adrian
Tanner; Columbia University, Andrew Mogilyansky; Cornell University, Isaac J.
Kuo; Harvard University, Daniel E. Gottesman, F. Dean Hildebrandt, Roger W.
Lee, Andrew P. Lewis; Harvey Mudd College, Guy D. Moore; University of
Illinois, Urbana-Champaign, David E. Bekman; University of Maryland, College
Park, Lev Novik; Massachusetts Institute of Technology, Andrew Chou, Edward B.
Hontz, Michael J. Lawler; Michigan State University, Thomas P. Hayes, Jacob R.
Lorch; University of Minnesota, Twin Cities, Wei Shen; University of Missouri,
Rolla, Xi Chen; Mount Allison University, Eugene Fink; New York University,
Daniel J. Bernstein; State University of New York, Stony Brook, Jason Israel;
Princeton University, Timothy Y. Chow, Gregory D. Landweber; Queens Univer-
sity, Alex Grossman; Reed College, Nathaniel J. Thurston; Stanford University,
Beesham A. Seecharan, Jay A. Shrauner, Garrett R. Vargas; Swarthmore College,
Olaf A. Holt; University of Texas, Austin, Bryan W. Taylor; University of Toronto,
Nima Arkani-Hamed; Trinity College, Hartford, Marshall A. Whittlesey; Washing-
ton State University, Julie B. Kerr; Washington University, St. Louis, Peter H.
Berman, Adam M. Costello, Jeremy T. Tyson; University of Waterloo, Michael A.
Buckley, John Daniel Christensen; and Yale University, Thomas Zuwei Feng,
Evan M. Gilbert, Zhaoliang Zhu.

There were 2347 individual contestants from 380 colleges and universities in
Canada and the United States in the competition of December 1, 1990. Teams
were entered by 289 institutions.

The Questions Committee for the fifty-first competition consisted of George E.
Andrews, Paul R. Halmos (Chair), and Kenneth A. Stolarsky; they composed the
problems listed below and were most prominent among those suggesting solutions.
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PROBLEMS
Problem A-1. Let

and for n > 3,
T,=(n+MdT,_, —4nT,_, + (4n — 8)T,_,.
The first few terms are
2,3,6,14,40,152,784,5168, 40576, 363392.

Find, with proof, a formula for 7, of the form 7, = A, + B,, where (A,,) and (B,)
are well-known sequences.

3 3
Problem A-2. Is V2 the limit of a sequence of numbers of the form Yn — Vm,
(n,m=0,1,2,...)?

Problem A-3. Prove that any convex pentagon whose vertices (no three of which
are collinear) have integer coordinates must have area > 5/2.

Problem A-4. Consider a paper punch that can be centered at any point of the
plane and that, when operated, removes from the plane precisely those points
whose distance from the center is irrational. How many punches are needed to
remove every point?

Problem A-5. If A and B are square matrices of the same size such that
ABAB = 0, does it follow that BABA = 0?

Problem A-6. If X is a finite set, let |X| denote the number of elements in X.
Call an ordered pair (S, T') of subsets of {1, 2, ..., n} admissible if s > |T| for each
s €S§,and t > |S| for each ¢ € T. How many admissible ordered pairs of subsets
of {1,2,...,10} are there? Prove your answer.

Problem B-1. Find all real-valued continuously differentiable functions f on the
real line such that for all x

(F) = [ (£ + (£(0))?) dr + 199%.

Problem B-2. Prove that for |x| <1, (z| > 1,

(1=2)(1—zx)(1 —zx?) - (1 — 2’71 —0
(z=x)(z=x*)(z—-x%) - (z—x)) ’

1+ Y (1+x%)
i=1

Problem B-3. Let S be a set of 2 X 2 integer matrices whose entries a;; (1) are
all squares of integers, and, (2) satisfy a;; < 200. Show that if S has more than

50387 (= 15* — 152 — 15 + 2) elements, then it has two elements that commute.

Problem B-4. Let G be a finite group of order n generated by a and b. Prove or
disprove: there is a sequence

815 gz,g37"'g2n
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such that
(1) every element of G occurs exactly twice, and
(2) g;, equals g;a or g;b, for i = 1,2,...,2n. (Interpret g,,,, as g,.)

Problem B-5. Is there an infinite sequence a,, a;, a,,... of nonzero real num-
bers such that for n = 1,2, 3, ... the polynomial

p(x)=ay+ax+a,x*+ - +a,x"
has exactly n distinct real roots?

Problem B-6. Let S be a nonempty closed bounded convex set in the plane. Let
K be aline and ¢ a positive number. Let L, and L, be support lines for S parallel
to K, and let L be the line parallel to K and midway between L, and L,. Let
Bg(K, t) be the band of points whose distance from L is at most (¢/2)w, where w
is the distance between L, and L,. What is the smallest ¢ such that

SN N Bs(K,t) + D
K

for all $? (K runs over all lines in the plane.)

Support line L,

Support line L,

SOLUTIONS

In the 12-tuples (n,y, nq, . .., ny, n_,) following each problem number below, n;
for 10 > i > 0 is the number of students among the top 199 contestants achieving i
points for the problem and n_, is the number of those not submitting solutions.

A-1(150,9,1,0,0,0,0,0,1,1, 6, 33)
Solution. The formula for 7, is
T, =n!+2"

This can be verified by induction. Alternatively, set ¢, = n!+ 2". Clearly ¢, = 2 =
To, tl = 3 = T] and tz = 6 = Tz. AlSO,

t,—nt,_; =2"—n2""L
Now 2" and n2"~! are both solutions of the recurrence equation
fn_4fn—1+4fn—2=0’ (*)
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which is easily shown by direct substitution. Therefore since ¢, — nt,_, is a linear
combination of solutions to (*), it must also be a solution. Consequently,

(ty = nt,_y) =4ty — (n = Dt, ) +4(t,, — (n = 2)t,_3) = 0,
or
t,=(n+4)t,_, —4nt,_, + (4n — 8)t,_5:
Hence ¢, = T, because they are identical for n = 0,1,2 and satisfy the same
third-order recurrence (*) for n > 3.
A-2(63,25,16,4,0,0,0, 4,5, 6,21, 57)

Solution. Since

VW +1 -V =+ . —,
Vin+ 12 +V(n + Dn + Vn?

3 3
it follows that Yn + 1 — Vn — 0 as n — o, and hence that there are arbitrarily
3 3 3 3 3 3
small numbers of the form Vn — Vm . Since k(Vn — VYm) = Vk3n — Vk’m, it

follows that the set of numbers of that form is closed under multiplication by
arbitrary positive integers. The preceding two sentences imply that the set of
numbers of the form under consideration is dense, and hence that every real
number is a limit of a sequence of such numbers.

1

A-3(4,4,4,0,0,0,0,0, 22, 36, 76, 55)

Solution. By Pick’s formula, the area is I + B/2 — 1, where I is the number of
internal lattice points and B is the number on the boundary. Clearly, 7 > 0 and
B >5.1f I > 1 we are done.

If I = 0, then separate the vertices v,, U,, U3, U4, Us into four classes according
to the parity of their coordinates. At least one class must have at least two
elements, say v, and v,. Hence the mid-point 3(v, + v,), is also a lattice point;
call it v,. Since I = 0, v, is on the boundary of the pentagon. Now consider the
five points {v,, v,, U5, Uy, Us}. The same reasoning produces a second lattice point
vy which is not v, (since v§ is a mid-point) and not in the interior (since I = 0.)
Thus we have a second new lattice point on the boundary. Therefore, B > 7, so
again the area is > 5/2.

A-4(44,7,6,6,0,0,0, 0, 32, 15, 30, 61)

Solution. The answer is certainly greater than 2. Reason: to any two distinct
points there corresponds at least one point whose distance from each of the given
ones is rational. Proof: draw circles centered at the given points with rational radii;
if the circles are not chosen too carelessly, they will intersect. (Choose the radii to
be more than half the given distance but less than the whole.)

Three punches are enough. Indeed: punch twice, at distinct centers. Since each
punch leaves countably many circles, the two punches leave their intersections, a
countable set. Consider all circles centered at points of that set, with rational radii;
their intersections with an arbitrary line form a countable set. A point of that line
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not in that countable set is at an irrational distance from all remaining points;
apply the punch there.

A-5(29,5,0,0,0,0,0,0, 1, 0, 58, 108)

Solution. The answer is yes for 2 X 2 matrices and no in all other cases. Indeed:
since ABAB = 0, it follows that B(ABAB)A = 0, and hence that BA is nilpotent. If
a 2 X 2 matrix M is nilpotent, then M? = 0 (because the characteristic equation of
M has degree 2 or less).

A counterexample for 3 X 3 (and therefore, just by enlargement by 0’s, for any
size) is to take

0 0 1 0 0 1
A={0 0 0], B={1 0 0.
0 1 0 0 0 0

A-6 (6, 6,54,1,0,0,0,0, 4, 0, 45, 85)

Solution. Let A, denote the number of admissible ordered pairs of subsets of

{1,2,..., n}. Clearly
e x )
O<i,j<n J l

Define

while

N
X
|
oo
X
|
[ If
—_— —_——
S S
| -
~. e~ ~.
| ——
—_ S
~——
—_——
S ~
|
-~ —
|
—_ +
N — N
+
—_

0<i,j<n-1

=4, ,+1.
Hence we immediately verify by induction that
An=F2n+2’ Bn=F2n+3_ 1

Hence, A,y = F,, = 17711. (F; is the i-th Fibonacci number, defined by F, = 0,
F,=1andforn>2,F,=F,_ ,+F,_,.)
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B-1(114, 2,52,0,0,0, 0, 11, 5, 3, 10, 4
Solution. There are two such functions, namely f(x) = vV1990e*, and f(x) =
— V1990 e¢*. To see this, suppose that the identity holds. Differentiating each side
gives
2£(x)f'(x) = (F(x)) + (f(2))’,
or equivalently,
(f(x) =f'())* =0,  f(x) =f(x),
loglf(x)l =x + C,  If(x)l =eC*.
But f is continuous and f(0) = + V1990, and this implies that f(x) = + V1990e*.
B-2(23,5,4,9,0,0,0, 3,0, 0, 32, 125)
Solution. Let Sy =1, and for n > 1, let
" (1 -2) 1 —-z)(1 —zx?) - (1 —2xi7!
S,=1+ Z(1+x1)( ) )g )3 ( j)
j=1 (z=x)(z=x")(z—-x") (2 —x)
It is easy to check that S, =1 —zx)/(z —x), S, =1 —zxX1 — zx?)/
(z — x)X(z — x?), and by induction,
(1 —2zx)(1 —zx?) -+ (1 — zx")
Tz ) (27

To complete the proof, we need to prove that lim,, . S, = 0. To see this, we note

that
l_zxn+1
Spi1 = (W)Sn'

Asn— o, 1 —zx"*! goesto 1 and z — x"*! goes to z. Thus, there exist positive
numbers N and & such that

1
< — +e<1

|z|

1— an+1
z _xn+1

for all integers n > N. It follows that

1
Spiql <= +ellS
18411 (|Z| s)I nl

and the result follows.
B-3(97,7,4,2,0,0,0,0, 12, 2, 54, 23)

Solution. Let U be all such 2 X 2 matrices, D the diagonal ones, and J those
that are multiples of (| ). Note that (i) any two from D commute, (ii) any two

from J commute, and (iii) ((1) }) and ((1) ‘1‘) commute. Clearly,
lUn(DuN|=1Ul-IDI =Vl +IDNJl =15 —152 - 15 + 1.
Suppose that no two elements of S commute, and write
S=(SN(DUJ))U(Sn(DUJT)).
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Clearly, |S N (D U J)| < 2 and (by (iii) above)
SN (DU | <|lUn (DU <15 - 15215+ 1.

The result follows. (Here X°¢ denotes the complement of X.)

The number 50387 is far from the best possible and there are many potential
solutions. Jiugiang Liu and Allen J. Schwenk from Western Michigan University
have shown, using an inclusion-exclusion argument, that the maximum number of
elements in U in which no two elements commute is 32390.

B-4(9,52,1,0,0,0,0, 3, 2, 63, 116)

Solution. Construct a graph whose vertices are labeled by the elements of G, so
that for each vertex g, there are two “out” arcs, one to vertex ga and one to vertex
gb (and consequently, each vertex g has two “in” arcs coming to it, one from ga !
and one from gb~!). The resulting graph is connected and each vertex has
outdegree 2 and indegree 2. Therefore there is an Eulerian path which traverses
the arcs, once and only once, and returns to the beginning. We get the desired
sequence by listing the group elements associated with the vertices as we follow
this path.

B-5 (16, 11, 15, 12, 0, 0, 0, 11, 5, 5, 48, 78)

Solution. Take a, = 1, a, = —1, and proceed by induction. Say p,(x) has the
property, and also p,(x) — o« or —o as x — « depending upon whether # is even
or odd. Then

(_x)n+1
M

has a sign change arbitrarily close to every root of p,(x) for M sufficiently large,
and also the same sign as p,(x) at x* + 1 where x* is the largest root of p,(x).
But now (M is already fixed) for x sufficiently large p,,,(x) has another sign
change. Since p,, (x) has at most n + 1 roots, the result follows.

B-6(5,0,0,0,0,0,0, 0, 38, 6, 29, 123)

Ppia(X) =pu(x) +

Solution. Consider the dissection of the equilateral triangle (as shown) into 9
similar equilateral triangles.

L,

L,

It shows that any ¢ < 1/3 produces an empty intersection.
We now show that the intersection is nonempty for ¢ > 1/3, since it always
contains the centroid of S. Think of L, as the upper support line (see sketch).
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L,

Let P, be a point of contact of L, with S, and P, a point of contact of L, with S.
Extend two lines from P, to points Q,, O, on L, so that A,, the region “above”
P,Q, and in S has area equal to that of B;, the region “below” P,Q, above L,
and outside of S. If S is perturbed by replacing A, by B, (and similarly 4, by B,)
the new S (it is a triangle) will have a “lower” centroid. But this new centroid is
still 1/3 of the way above L, (on the way to L,). Hence if 8 is a band comprising
the middle 1/3 of the strip between L, and L,, it contains the centroid of S.
Hence for ¢t = 1/3, the intersection is nonempty. Hence ¢ = 1/3 is the smallest
such value.



