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The Fifty-Second William Lowell Putnam
Mathematical Competition

Leonard F. Klosinski
Gerald L. Alexanderson
Loren C. Larson

The following results of the fifty-second William Lowell Putnam Mathematical
Competition, held on December 7, 1991, have been determined in accordance with
the governing regulations. This annual contest is supported by the William Lowell
Putnam Prize Fund for the Promotion of Scholarship, left by Mrs. Putnam in
memory of her husband, and is held under the auspices of the Mathematical
Association of America.

The first prize, $5,000, was awarded to the Department of Mathematics of
Harvard University. The members of the winning team were: Jordan S.
Ellenberg, Samuel A. Kutin, and Eric K. Wepsic; each was awarded a prize of
3250.

The second prize, $2,500, was awarded to the Department of Mathematics of
the University of Waterloo. The members of the winning team were Daniel R. L.
Brown, lan A. Goldberg, and Colin M. Springer; each was awarded a prize of
$200.

The third prize, 31,500, was awarded to the Department of Mathematics of
Harvey Mudd College. The members of the winning team were Timothy P.
Kokesh, Jon H. Leonard, and Guy D. Moore; each was awarded a prize of $150.

The fourth prize, 31,000, was awarded to the Department of Mathematics of
Stanford University. The members of the winning team were Gregory G. Martin,
Garrett R. Vargas, and Andrds Vasy; each was awarded a prize of 3100.

The fifth prize, $500, was awarded to the Department of Mathematics of Yale
University. The members of the winning team were Zuwei Thomas Feng, Evan
M. Gilbert, and Andrew H. Kresch; each was awarded a prize of $50.

The five highest ranking individual contestants, in alphabetical order, were Xi
Chen, University of Missouri, Rolla; Joshua B. Fischman, Princeton University;
Samuel A. Kutin, Harvard University; Ravi D. Vakil, University of Toronto; and
Eric K. Wepsic, Harvard University. Each of these was designated a Putnam
Fellow by the Mathematical Association of America and awarded a prize of $500
by the Putnam Prize Fund.

The next five highest ranking individuals, in alphabetical order, were Daniel
R. L. Brown, University of Waterloo; Gregory G. Martin, Stanford University;
David M. Patrick, Carnegie Mellon University; Jun Teng, California Institute of
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Technology; and Jeffrey M. Vanderkam, Duke University. Each was awarded a
prize of $250.

The following teams, named in alphabetical order, received honorable mention:
the University of British Columbia, with team members Rob M. Deary, Malik M.
Kalfane, and Mark A. Van Raamsdonk; the Massachusetts Institute of Technol-
ogy, with team members Christos Athanasiadis, Henry L. Cohn, and Mikhail
Grinberg; Oberlin College, with team members Gary N. Felder, Susan J. Patterson,
and Ian B. Robertson; Princeton University, with team members Joshua B.
Fischman, Peter R. Kramer, and Gregory D. Landweber; and the University of
Toronto, with team members Nima Arkani-Hamed, Jeff T. Higham, and Ravi D.
Vakil.

Honorable mention was achieved by the following thirty-four individuals named
in alphabetical order: Christos Athanasiadis, Massachusetts Institute of Technol-
ogy; Radu Bacioiu, Dartmouth College; David S. Bigham, Duke University;
Hubert L. Bray, Rice University; Daniel P. Cory, Stanford University; Graham C.
Denham, University of Alberta; Jordan S. Ellenberg, Harvard University; Ian A.
Goldberg, University of Waterloo; Steven S. Gubser, Princeton University;
F. Dean Hildebrandt, Harvard University; Daniel C. Isaksen, University of Califor-
nia, Berkeley; Dmitry A. Ivanov, Georgia Institute of Technology; Timothy P.
Kokesh, Harvey Mudd College; Andrew H. Kresch, Yale University; Gregory D.
Landweber, Princeton University; Roger W. Lee, Harvard University; Andrew P.
Lewis, Harvard University; Jacob R. Lorch, Michigan State University; Samuel J.
Maltby, University of Calgary; David K. McKinnon, Harvard University; Peter L.
Milley, University of Waterloo; Guy D. Moore, Harvey Mudd College; Demetrio
A. Munoz, Cornell University; Lev Novik, University of Maryland, College Park;
Joel E. Rosenberg, Princeton University; Colin M. Springer, University of Water-
loo; Andrej §uch, Queen’s University; Dylan P. Thurston, Harvard University;
Samuel K. Vandervelde, Swarthmore College; Garrett R. Vargas, Stanford Univer-
sity; Kevin M. Wald, Harvard University; Erick Wong, Simon Fraser University;
John H. Woo, Harvard University; and Michael E. Zieve, Harvard University.

The other individuals who achieved ranks among the top 100, in alphabetical
order of their schools, were: Boston University, Michael G. Szydlo; University of
British Columbia, Rob M. Deary, Mark A. Van Raamsdonk; Brown University,
Kenneth W. Bromberg; California Institute of Technology, William M. Watson;
University of California, Berkeley, Benjamin J. Davis; University of California, Los
Angeles, Christopher B. Baker; Carleton College, Mark J. Logan; Dartmouth
College, Paul B. Larson, Dan O. Popa; Duke University, David M. Jones; Harvard
University, David B. Carlton, Tal N. Kubo, Lawren M. Smithline; Harvey Mudd
College, Jon H. Leonard; Hope College, Alexey G. Stepanov; University of Illinois,
Champaign-Urbana, David E. Beckman; Kalamazoo College, Kenneth P. Mulder;
Le Tourneau University, Bryan D. Greer; Massachusetts Institute of Technology,
Thomas C. Chou, Henry L. Cohn, Michael J. Lawlor, Patrick J. LoPresti, Todd W.
Rowland, Jason M. Sachs, David E. Tang; Michigan State University, Thomas P.
Hayes; University of Michigan, Ann Arbor, Soundararajan Kannan; New York
University, David P. Gamarnik; Northwestern University, Ashvin M. Sangoram;
Oberlin College, Ian B. Robertson; University of Pennsylvania, Frosti Petursson;
Princeton University, Ze-Yu Chen, Jonathan T. Higa, Adam M. Logan, Mark W.
Lucianovic; Rice University, Clark B. Bray; University of Rochester, Daniel B.
Finn; Rose Hulman Institute of Technology, Jonathan E. Atkins; Stanford Univer-
sity, James M. Mailhot; Swarthmore College, David A. Packer; University of
Texas, Austin, Douglas S. Hauge; University of Toronto, Jeff T. Higham, Colin J.
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Rust, Hugh A. Thomas; Trinity College, Hartford, Marshall A. Whittlesey; Univer-
sity of Victoria, Benjamin J. Tilly; Washington State University, Julic B. Kerr;
Washington University, St. Louis, Scott P. Nudelman, Jeremy T. Strzynski; Univer-
sity of Waterloo, Paul L. Check, James H. Coleman, Jie J. Lou; Yale University,
Zuwei Thomas Feng, Matthew Frank, Zhaohui Zhang.

There were 2325 individual contestants from 383 colleges and universities in
Canada and the United States in the competition of December 7, 1991. Teams
were entered by 291 institutions.

The Questions Committee for the fifty-second competition consisted of George
E. Andrews, George T. Gilbert, and Kenneth A. Stolarsky (Chair); they composed
the problems listed below and were most prominent among those suggesting
solutions.

PROBLEMS

Problem A-1.

A 2 X 3 rectangle has vertices at (0,0), (2,0), (0,3), and (2,3). It rotates 90°
clockwise about the point (2, 0). It then rotates 90° clockwise about the point (5, 0),
then 90° clockwise about the point (7, 0), and finally, 90° clockwise about the point
(10, 0). (The side originally on the x-axis is now back on the x-axis.) Find the area
of the region above the x-axis and below the curve traced out by the point whose
initial position is (1, 1).

Problem A-2.

Let A and B be different n X n matrices with real entries. If A> = B3 and
A’B = B?A, can A” + B2 be invertible?
Problem A-3.

Find all real polynomials p(x) of degree n > 2 for which there exist real
numbers r; <r, < --- <r, such that

(i) p(r) =0, i=1,2,...,n,

and
(ii) p(r+2rl+])=0, i=1,2,...,n—-1,
where p'(x) denotes the derivative of p(x).
Problem A-4.
Does there exist an infinite sequence of closed discs D,, D,, Ds,... in the
plane, with centers ¢, c,, c3, ..., respectively, such that

(i) the ¢; have no limit point in the finite plane,
(i) the sum of the areas of the D, is finite, and
(iii) every line in the plane intersects at least one of the D,?
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Problem A-5.

Find the maximum value of

VG

forO0<y<1.
Problem A-6.

Let A(n) denote the number of sums of positive integers a;, + a, + + - +a,
that add up to n with a; > a, + a5, a,>a;+tay,...,a,_,>a,_;+a,a,_,;>

a,. Let B(n) denote the number of b, + b, + - -+ +b, that add up to n, with

(i b, =2b,> - =b,,
(ii) each b; is in the sequence 1,2,4,...,g;,... defined by g, =1, g, = 2, and
g =8_1+tg_»+1 and
(iii) if b, = g, then every element in {1,2,4,..., g,} appears at least once as
ab,.

Prove that A(n) = B(n) for each n > 1.

(For example, A(7) = 5 because the relevant sums are 7, 6 + 1, 5 + 2, 4 + 3,
4 4+ 2 + 1, and B(7) = 5 because the relevant sums are 4 + 2 + 1,2 + 2 + 2 + 1,
2+2414+414+1,24+414+1+1+1+1,1+1+1+1+1+1+1)

Problem B-1.

For each integer n > 0, let S(n) = n — m?, where m is the greatest integer with
m? < n. Define a sequence (a,);_, by a, =A and a, ., = a, + S(a,) for k > 0.
For what positive integers A is this sequence eventually constant?

Problem B-2.

Suppose f and g are nonconstant, differentiable, real-valued functions on R.
Furthermore, suppose that for each pair of real numbers x and y,

f(x+y) =f(x)f(y) —8(x)8(y),

g(x+y)=f(x)g(y) +&(x)f(y).
If f'(0) = 0, prove that (f(x))* + (g(x))* = 1 for all x.

Problem B-3.

Does there exist a real number L such that, if m and »n are integers greater
than L, then an m X n rectangle may be expressed as a union of 4 X 6 and 5 X 7
rectangles, any two of which intersect at most along their boundaries?

Problem B-4.
Suppose p is an odd prime. Prove that

()"

j=0

= 27 + 1(mod p?).
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Problem B-5.

Let p be an odd prime and let Z, denote (the field of) the integers modulo p.
How many elements are in the set

x2xeZIn{y*+1:yezl?
p p

Problem B-6.

Let a and b be positive numbers. Find the largest number c, in terms of a and
b, such that

sinh ux sinh u(1 — x)

sinh u sinh u

for all u with 0 < |u| < c and for all x, 0 <x < 1. (Note: sinh u = (e* — e~ %) /2.)

SOLUTIONS

In the 12-tuples (n,q, 1y, . .., ny, n_,) following each problem number below, n;
for 10 > i > 0 is the number of students among the top 213 contestants achieving i
points for the problem and n_, is the number of those not submitting solution.

A-1 (189,0,3,0,0,0,0,0,0,1,20,0)

Solution. The point (1, 1) rotates around (2,0) to (3,1), then around (5,0) to
(6, 2), then around (7, 0) to (9, 1), then around (10, 0) to (11, 1). The area of concern
consists of four 1 X 1 right triangles of area 1/2, four 1 X 2 right triangles of area

1, two quarter circles of area (7/4)y2)? = 7 /2, and two quarter circles of area
(/4)(5)? = 57 /4. Hence the total area is 77 /2 + 6.

A-2 (150,17,2,1,0,0,0,0,3, 5, 15, 20)

Solution. No. If so, then A — B = (A> + B?)"'(A? + B?)XA - B) =
(A’ + B>)"'(A> + B’A — A’B — B = (A2 + B?)"'0 = 0, so A = B, a contradic-
tion.

A-3 (42,35,29,0,0,0,0,0,6,5, 63,33)
Solution. The set of polynomials is {ax? + bx + c:a # 0, b> — 4ac > 0}.
First, if p(x) is such a polynomial, it must have two distinct real roots, say ry, r,,

with r; < r,. It is easy to check that such polynomials meet the condition. To show
nothing else does, write

p(x) =a(x —r)(x —ry) - (x—r,)
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where r; <r, < :-- <r, and n > 3. Then
p'(x) =a2x — (ry +r)))a(x) +a(x = r)(x = r)q'(x),
where g(x) = (x — r;) - - - (x — r,). By Rolle’s Theorem, all the zeros of g'(x) lie

between r; and r,. Hence (r, + r,)/2 is not a zero of ¢'(x), showing that p(x)
does not meet the condition.

A-4 (86,33,43,0,0,0,0,0,12,3,21,15)

Solution. Let a; be a decreasing sequence of positive numbers a; < 1, La; = =,
and Ta} < » (for example, a; = 1/i). Let D, be a disc of radius a,. Cover
x*+y?=1 by translates (each of which shall intersect x2+ y2=1) of
Dy, Dy, ..., D,, with m; < . This can be done since L diam(D,) = 2La; = .

Now cover x2 + y? = 2 similarly by translates of D, ..., D, where m, <
(same justification), ..., x> + y> =k by D,, _,y,..., D, etc.

Clearly, every line intersects x? + y? = k for some integer k; moreover, Ya? <
o« implies ¥ area(D,) = w¥la? is finite.

Finally, any disc is inside of a disc x*+ y%=k,, and the discs covering
x> +y?<h for h >k, + 4 cannot intersect x> + y? < k, (recall (a,) is decreas-
ing, a; < 1). Hence the ¢; have no limit point, since no disc may contain infinitely

many of them.

A-5 (23,4,5,0,0,0,0,0,3,6,82,90)

Solution. For 0 <y <1 let I(y) = foy\/x“ +(y - yz)2 dx. Claim: I'(y) > 0
with equality only in the (clearly non-optimal) case y = 0.
To see this, observe that

') = Ve (=) f(}i};ﬁ%i;)
X y—y

If 0 <y < 1/2 clearly I'(y) is positive. So suppose y > 1/2. Then I'(y) > 0 is
equivalent to

\/y“+(y—yz)2 >(y—y2)(2y—1)f0y\/

dx.

dx

x4+ (y - y2)2
Since
y dx y
= ————I.% =
R e o B (CE O
it suffices to show \/y4 +(y - yz)2 > 2y — 1)y, 1/2 <y < 1. This is the same
as

dx y

27

2
i+ (v —y2) = (2y - 1)%)?
<=>y2+(1—y)22(2y—1)2
©2y? -2y +1>4y2—4dy +1
o2y >2y2,

the last of which is clearly true.
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Now, for y < 1, I(y) < I(1) = [¢x*dx = 1/3, s0 1/3 is the maximum.

Note: If y, < 1/2 it is easy to see that I(y,) < I(1 — y,) since the integrand is
nonnegative and (y(1 — y))? is invariant under y — 1 — y. Hence one may restrict
attention to y > 1/2 from the very beginning.

A-6 (8,21,8,1,0,0,0,0,6,7,40,122)

Solution. The sums represented by A(n) may be given an “array” representation
using Fibonacci numbers.

Start with a,_, and a, using two rows of 1’s, the lower row with a, ones and the
upper with a,_, ones:

a,_:1111111
a:11111

The top row exceeds the bottom row since a,_, > a,.
Now a,_, > a,_; + a,, hence we can uniquely write

a, ;2222211111
a, 11111111
a,:11111

SO

a, 5233333221111

a, 22222211111

a, 1111111
a,:11111

Next, a,_;>a,_,+a

r—1»

The total array of the representation will involve columns of the form F, +
F, + F;+ --- +F, and it is easy to see that this is just g, That is, by reading
columns we see that we have a one-to-one correspondence between the partitions
enumerated by A(n) and those enumerated by B(n).

Hence A(n) = B(n) for all n.

B-1 (192,6,2,0,6,0,0,0,0,5,0,2)

Solution. If A is a perfect square, the sequence is eventually constant, since it is
identically A. Clearly the sequence diverges to infinity if it never contains a perfect
square. So, say a,, is not a perfect square, but a,,, = (r + 1) If a, > r? then

ap+1 = 4, +S(an)’
(r+ 1)2 =a,+ (a,-r?),
r?+ (r+ 1) = 2a,,

a contradiction because the left side is odd but the right side is even. On the other
hand, if a, < r* we have

(r+1)2=an+S(an)<r2+(rz—l—(r—1)2)=r2+2r—2,
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again a contradiction. Hence if A4 is not a perfect square, no a, is a perfect
square.

B-2 (93,30, 8,0,0,0,0,0,7,1,57,17)

Solution. Differentiate both sides of the two equations with respect to y,
obtaining

fi(x+y)=f(x)f'(y) —g(x)g'(y),
g(x+y)=f(x)g'(y) +8(x)f'(v).
Setting y = 0 yields

f'(x) = —g'(0)g(x) and g'(x) =2g'(0)f(x).
Thus

2f(x)f'(x) + 28(x)8'(x) =0,

and therefore

(f(x))* + (g(x))’=C

for some constant C. Since f and g are nonconstant, C # 0. From the identity

[£(x + )]+ [e(x + 017 = [(F(0)) + (2(0))][(F())* + (8(»)]

we see that C = C2. Since C # 0, we have C = 1.
B-3 (38,11,4,0,0,0,0,0,5,7,49,99)

Solution. Yes.

Claim: If a and b are positive integers, then there exists a number L, so that
every multiple of (a, b) (the greatest common divisor of a and b) greater than L,
may be written in the form ra + sb, where r and s are nonnegative integers.

Proof of Claim: Suppose first that (a,b) = 1. Then 0,4,2a,...,(b — Da
is a complete set of residues modulo b. Thus, for any integer k greater than
(b—1a —1, k — gb = ja for some g >0, j =0,1,2,...,b — 1, hence the claim
for this special case.

In general, since a/(a, b) and b/(a, b) are relatively prime, we make use of the
above to see that for some L,, every integer greater than L, can be written in the
form ra/(a,b) + sb/(a, b). Multiplying through by (a, b) yields the claim.

To answer the question, we begin by forming 20 X 6 and 20 X 7 rectangles.
From the claim, we may form 20 X n rectangles for n sufficiently large. We may
also form 35 X 5 and 35 X 7 rectangles, hence 35 X n rectangles for n sufficiently
large. We may further form 42 X 4 and 42 X 5 rectangles, hence 42 X n rectangles
for n sufficiently large.

Since (20,35) = 5, there exists a multiple m, of 5, relatively prime to 42 and
independent of sufficiently large n, for which we may form an m, X n rectangle.
Finally, since (m,,42) = 1, we may form all m X n rectangles for m and n
sufficiently large.

B-4 (21,1,7,0,0,0,0,0,23,1,37,123)
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Solution 1. The left side is equal to Z]’.;O(’; )( P;f ) This is equal to the
coefficient of x? in (1 + x) + 1)?(1 + x)?. To see this, note that for each jJ, (f) is

the coefficient of (1 + x)’ from the first factor, and therefore (1;)(,; ;j ) is the
coefficient of x? in (1 + x)?*/. Summing over j establishes the claim.
On the other hand, the coefficient of x” in (2 + x)?(1 + x)? is

,f=0(”)(pfk)2k. But p divides (j(’) for k # 0, p. Thus,

bt 9 e Bt 9 o R O [ A R M

1 + 27(mod p?).

D+t

J

Solution 2. By the Vandermonde convolution,

SO 2008 )67

- p p! (p—h)!
B hgo(p _h)h!(l’ —h)! j§0 (p=N)NJ—h)!
)4 2
= 2P—h
hZZ:O(h)

27 + 1(mod p?)

since the prime p divides ( ;’) for 0 <h < p.
B-5 (38,4,3,0,3,0,1,0,9,3,50,102)

Solution. There are |(p + 3)/4] elements in the intersection.
Consider first the set of solutions to

x2=y2+1. (%)
Rewriting this as (x + y)(x — y) = 1, we see that for each nonzero element r of

Z,, there is exactly one solution to the above, namely, x +y =r, x —y = r=1 or

p+1 p+1

Joermn, y=(2=)o=m.

Thus, there are p — 1 solutions to ().

On the other hand, the element x2 = y? + 1 in the intersection also arises from
the pairs (x, —y), (—x, y), and (—x, —y) as well as (x, y). These four pairs are
distinct unless x = 0 or y = 0, in which case there are just two distinct pairs. Note
that 1 arises from (1,0) and from (—1,0). Let ¢ = 1 if there is a solution with
x = 0 and let ¢ = 0 if not. Then the intersection has 1 + ¢ + d elements, where,
from the above, p — 1 =2 + 2¢ + 4d.

We see that ¢ = 1 if and only if p — 1 is divisible by 4. Solving for d in each
case, we find that 1 + ¢ +d = [(p + 3)/4].

Note: Ian Richards, University of Minnesota, points out that this problem is a
special case (k = 1) of the following: If y is the quadratic character mod p, then

X =
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Y2 x(n)x(n + k) = —1, independent of k. This follows from the theory of
Jacobi or Gauss sums.

B-6 (2,0,0,0,1,0,1,2,0,4,30,173)

Solution. The inequality is satisfied if and only if 0 < |u| < [In(a/b)|.

The right-hand side is an even function of u; hence it suffices to consider u > 0.
Replacing x by 1 — x and interchanging a and b preserves the inequality, hence
we may assume a > b. Set

sinh ux sinh u(1 — x) .
Fu) =a sinh u +b sinh u —ath
By differentiating
sinh ux
flu) = sinh u

we find that f'(u) < 0 if and only if g(u) = x tanh u — tanh xu < 0. This latter
inequality holds because g(0) = 0 and g'(u) < 0 for u > 0. Thus f(u) is strictly
decreasing in u, and therefore, so is F(u). If a > b then F(In(a /b)) = 0, whereas
if a = b then lim,, _, ;+F(u) = 0, and the proof is complete.

Note: By taking the limit as u — 0, we obtain a proof of the weighted version of
the arithmetic-mean—geometric-mean inequality.
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