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The Fifty-Third William Lowell Putnam
Mathematical Competition

Leonard F. Klosinski
Gerald L. Alexanderson
Loren C. Larson

The following results of the fifty-third William Lowell Putnam Mathematical
Competition, held on December 5, 1992, have been determined in accordance with
the governing regulations. This annual contest is supported by the William Lowell
Putnam Prize Fund for the Promotion of Scholarship, left by Mrs. Putnam in
memory of her husband, and is held under the auspices of the Mathematical
Association of America.

The first prize, $7,500, was awarded to the Department of Mathematics of Harvard
University. The members of the winning team were: Jordan S. Ellenberg, Samuel
A. Kutin, and Royce Y. Peng; each was awarded a prize of $500.

The second prize, $5,000, was awarded to the Department of Mathematics of
the University of Toronto. The members of the winning team were: J. P.
Grossman, Jeff T. Higham, and Hugh R. Thomas; each was awarded a prize of
$400.

The third prize, $3,000, was awarded to the Department of Mathematics of the
University of Waterloo. The members of the winning team were Dorian Birsan,
Daniel R. L. Brown, and Ian A. Goldberg; each was awarded a prize of $300.

The fourth prize, $2,000, was awarded to the Department of Mathematics at
Princeton University. The members of the winning team were Joshua B. Fischman,
Adam M. Logan, and Joel E. Rosenberg; each was awarded a prize of $200.

The fifth prize, $1,000, was awarded to the Department of Mathematics at
Cornell University. The members of the winning team were Jon M. Kleinberg,
Mark Krosky, and Demetrio A. Mufioz; each was awarded a prize of $100.

The five highest ranking individual contestants, in alphabetical order, were
Jordan S. Ellenberg, Harvard University; Samuel A. Kutin, Harvard University;
Adam M. Logan, Princeton University; Serban M. Nacu, Harvard University; and
Jeffrey M. Vanderkam, Duke University. Each of these was designated a Putnam
Fellow by the Mathematical Association of America and awarded a prize of $1,000
by the Putnam Prize Fund.

The next six highest ranking contestants, in alphabetical order, were David B.
Carlton, Harvard University; Ian A. Goldberg, University of Waterloo; Kiran S.
Kedlaya, Harvard University; Royce Y. Peng, Harvard University; Hugh R. Thomas,
University of Toronto; and Tong Zhang, Cornell University; each was awarded a
prize of $500.
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The next four highest ranking individuals, in alphabetical order, were Ze-Yu
Chen, Princeton University; Jonathan T. Higa, Princeton University; Svetlozar E.
Nestorov, Stanford University; and Samuel K. Vandervelde, Swarthmore College;
each was awarded a prize of $250.

The next nine highest ranking individuals, in alphabetical order, were Daniel
R. L. Brown, University of Waterloo; Jeff T. Higham, University of Toronto; F.
Dean Hildebrandt, Harvard University; Julie B. Kerr, Washington State Univer-
sity; Andrew H. Kresch, Yale University; William R. Mann, Princeton University;
Dana Pascovici, Dartmouth College; Michail G. Sunitsky, Princeton University;
and Douglas J. Zare, New College of the University of South Florida; each was
awarded a prize of $100.

The following teams, named in alphabetical order, received honorable mention:
Dartmouth College, with team members Radu Bacioiu, Rolf H. Nelson, and Dana
Pascovici; Duke University, with team members Craig B. Gentry, Alexander J.
Hartemink, and Jeffrey M. Vanderkam; Massachusetts Institute of Technology,
with team members Thomas C. Chou, Henry L. Cohn, and Michael J. Lawler;
University of British Columbia, with team members Malik H. Kalfane, David L.
Savitt, and Mark A. Van Raamsdonk; and Yale University, with team members
Thomas Feng, Andrew H. Kresch, and Zhaohui Zhang.

Honorable mention was achieved by the following thirty-one individuals named
in alphabetical order: James McCleery Berger, Brown University; Sergey Brin,
University of Maryland, College Park; Thomas C. Chou, Massachusetts Institute of
Technology; Henry L. Cohn, Massachusetts Institute of Technology; Brian D.
Ewald, University of Michigan, Ann Arbor; Joshua B. Fischman, Princeton Uni-
versity; J. P. Grossman, University of Toronto; Steven S. Gubser, Princeton
University; William M. Hesse, University of Connecticut; Adam Kalai, Harvard
University; Timothy P. Kokesh, Harvey Mudd College; Botond Kd&szegi, Harvard
University; Peter R. Kramer, Princeton University; Mark Krosky, Cornell Univer-
sity; Tal N. Kubo, Harvard University; Sergey V. Levin, Harvard University;
Samuel J. Maltby, University of Calgary; Demetrio A. Mufioz, Cornell University;
Akira Negi, University of North Carolina, Chapel Hill; Seth Padowitz, Brown
University; Andrew Przeworski, Massachusetts Institute of Technology; Philip T.
Reiss, University of Manitoba; James P. Sarvis, Massachusetts Institute of Tech-
nology; Kannan Soundararajan, University of Michigan, Ann Arbor; Michael G.
Szydlo, Boston University; Joe Y. Tien, University of California, Irvine; Mark A.
Van Raamsdonk, University of British Columbia; Jeffrey D. Wall, Princeton
University; Kelly Lynne Wieand, University of Wisconsin, Madison; Erick B.
Wong, Simon Fraser University; and Zhaohui Zhang, Yale University.

The other individuals who achieved ranks among the top 98, in alphabetical
order of their schools, were: Brigham Young University, John Wesley Robertson;
University of British Columbia, David L. Savitt; Brown University, Andrew Brecher;
California Institute of Technology, Steven C. Anderson; University of California,
Berkeley, Daniel C. Isaksen; University of Colorado, Boulder, Steve T. Soulé;
Cornell University, Jon M. Kleinberg; Dartmouth College, Radu Bacioiu; Duke
University, Alexander J. Hartemink; Harvard University, Manjul Bhargava, Joseph
I. Chuang, Michael L. Hutchings, Dimitri Kountourogiannis, Paul Li, Matteo J.
Paris, Chris Ternoey; Harvey Mudd College, Jon H. Leonard; University of Maine,
Orono, YuQun Chen; Massachusetts Institute of Technology, Jerome S. Khohayt-
ing, Tichomir G. Tenev, William W. Tucker; Memorial University of Newfound-
land, Robert P. Gallant; Michigan State University, Thomas P. Hayes; University
of Minnesota, Minneapolis, Matthew P. Kelly; Université de Montréal, Marc-André

756 FIFTY-THIRD PUTNAM COMPETITION [October



Lafortune; New York University, Mikhail Kogan; Ohio State University, Frank J.
Swenton; University of Pennsylvania, Frosti Petursson; Princeton University, Tibor
Beke, Mark W. Lucianovic; Purdue University, Pok-Yin Yu; Rice University,
Donald A. Barkauskas; Rose Hulman Institute of Technology, Jonathan E. Atkins;
Stanford University, Daniel P. Cory, Garrett R. Vargas; Texas A & M University,
Zheng-Zheng Li; University of Waterloo, Dorian Birsan, Kevin K. Cheung, Jie J.
Lou; Wellesley College, Yihao L. Zhang; West Virginia Wesleyan College, Emanuel
V. Todorov; and Yale University, Matthew Frank.

The Elizabeth Lowell Putnam Prize, named for the wife of William Lowell
Putnam and to be “awarded periodically to a woman whose performance on the
Competition has been deemed particularly meritorious”, is awarded this year for
the first time to Dana Pascovici of Dartmouth College. The winner is awarded a
prize of $500.

There were 2421 individual contestants from 393 colleges and universities in
Canada and the United States in the competition of December 5, 1992. Teams
were entered by 284 institutions.

The Questions Committee for the fifty-third competition consisted of George E.
Andrews (Chair), George T. Gilbert, and Eugene Luks; they composed the
problems listed below and were most prominent among those suggesting solutions.

PROBLEMS

Problem A-1.

Prove that f(n) =1 — n is the only integer-valued function defined on the
integers that satisfies the following conditions:

() f(f(n)) = n, for all integers n;
(i) f(f(n + 2) + 2) = n for all integers n;
(i) f(0) = 1.

Problem A-2.

1992

Define C(a) to be the coefficient of x in the power series expansion about

x =0 of (1 + x)* Evaluate

» N 1 1 1 ;
-y - + + + o —————— | dy.
fo (=D 7 4,72 y+3 y+1992 ) ¥

Problem A-3.

For a given positive integer m, find all triples (n, x, y) of positive integers, with
n relatively prime to m, which satisfy (x2 + y2)” = (xy)".
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Problem A-4.

Let f be an infinitely differentiable real-valued function defined on the real

numbers. If
f ! = i =1,2,3
( ) 1 n ,2,3,...,

compute the values of the derivatives f*(0), k = 1,2,3,... .

Problem A-5.

For each positive integer 7, let

_ /0 if the number of 1’s in the binary representation of # is even,
4n 1 if the number of 1’s in the binary representation of # is odd.

Show that there do not exist positive integers k£ and m such that

ak+j=ak+m+j=ak+2m+j, fOI‘OS}Sm—l.

Problem A-6.

Four points are chosen at random on the surface of a sphere. What is the
probability that the center of the sphere lies inside the tetrahedron whose vertices
are at the four points? (It is understood that each point is independently chosen
relative to a uniform distribution on the sphere.)

Problem B-1.

Let S be a set of n distinct real numbers. Let A be the set of numbers that
occur as averages of two distinct elements of S. For a given n > 2, what is the
smallest possible number of distinct elements in A g?

Problem B-2.

For nonnegative integers n and k, define Q(n, k) to be the coefficient of x* in
the expansion of (1 + x + x? + x3)". Prove that

om0 = X (5] ")

j=

—

where Z) is the standard binomial coefficient. (Reminder: For integers a and b

with a > 0, (2) = a!/(ba — b)) for 0 < b < a, and ()= 0 otherwise.)

Problem B-3.

For any pair (x, y) of real numbers, a sequence (a,(x, y)),., is defined as
follows:

ag(x,y) =x,

2 2
a\x,y +y
an+1(x,)’)=( ( 2)) , foralln > 0.

Find the area of the region {(x, y) | (a,(x, y)), . o converges}.
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Problem B-4.

Let p(x) be a nonzero polynomial of degree less than 1992 having no noncon-
stant factor in common with x3 — x. Let

a7 ( p(x) ) _ )

dx1992 x3 —x g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

Problem B-5.
Let D, denote the value of the (n — 1) X (n — 1) determinant

3011 1 1
14 1 1 1
1105 1 1
111 6 1
111 1 - n+l

Is the set {D, /n!}, . , bounded?

Problem B-6.
Let .# be a set of real n X n matrices such that

(i) I € #, where I is the n X n identity matrix;

(ii) if A € # and B € .#, then either AB € .# or —AB € .#, but not both;
(iii) if A € # and B € .#, then either AB = BA or AB = —BA;

(iv) if A € .# and A # I, there is at least one B € .# such that AB = —BA.

Prove that .# contains at most n? matrices.

SOLUTIONS

In the 12-tuples (n,q, Ry, . . ., Ny, n_;) following each problem number below, 7,
for 10 > i > 0 is the number of students among the top 203 contestants achieving i
points for the problem and n_, is the number of those not submitting solutions.

A—1(31,82,42,10,0,0,0,7,23,6,2,0)

Solution. If f(n)=1—n, then f(f(n)=fQ1-n)=1-0-n)=n, so ()
holds. Similarly, f(f(n +2) + 2) = f(—n — 1) + 2) = f(1 — n) = n, so (ii) holds.
Clearly (iii) holds, and so f(n) = 1 — n satisfies the conditions.

Conversely, suppose f satisfies the three given conditions. From condition (i1),
F(f(f(n + 2) + 2)) = f(n), and applying (i) yields f(n +2) + 2 = f(n) or f(n +
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2) = f(n) — 2. An easy induction yields

_ | f(0) —n if n is even,
FM =051y +1-n ifnisodd.

If f(0) = 1, then f(1) = 0 by (i), therefore, f(n) =1 — n.
A-2 (157,1,0,0,0,0,0,0,2,14, 14,15)

Solution. From the binomial series, we see that
(=y=1D(-y—=2)-(-y - 199)
1992!
(y+1D(y+2) - (y+1992)

1992! ’

C(-y-1)=

Therefore,

1 1 1
C(—y_l)(y+1 * y+2 +“'+y_+i@)
B d((y+1)(y+2)-~~(y+l992))
dy 1992! '
Hence the integral in question is

(y+1)(y+2):---(y+1992) J (v + Dy +2) - (y+1992)
19921 ) Y= 1992!

=1993 — 1 = 1992.

1

1d

fody

0

A-3 (55,20,7,0,0,0,0,0, 16, 7, 45, 53)

Solution. There are no solutions if m is odd. If m is even, the only solution is
(n,x,y)=(m + 1,2m/2,2m/2),

If (n, x, y) is a solution, then by the arithmetic-mean—geometric-mean inequal-
ity, (xy)" = (x2 + y?)™ > (2xy)™, so n > m. Let p be a prime number. Let a and
b be the largest powers of p that divide x and y, respectively. Then the largest
power of p dividing (xy)" is (a + b)n. If a < b, the largest power of p dividing
(x% 4+ y?)™ is 2am. But this implies that (a + b)n = 2am, and this contradicts
n > m. Similarly, the.assumption a > b leads to a contradiction. Therefore a = b
for all primes p, and we conclude that x =y. Thus, the equation reduces to
(2x2)™ = x?", or equivalently, x2"~™ = 2™ Tt follows that x is a positive power
of 2, say 2¢. This implies 2(n — m)a = m, or, 2an = (2a + 1)m. Since gcd(m, n)
= gcd(2a,2a + 1) =1, we must have m =2a and n =2a + 1. Thus, m is
necessarily even and the solution follows as claimed.

A-4(17,6,7,0,0,0,2,0,73,18,47,33)
Solution. We will show that

f(k)(O) _ (—1)k/2k! if k is even,
0 if k is odd.
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First we note that if A(x) is a differentiable function and x,, x,,..., is a
sequence strictly decreasing to 0 such that A(x,) = 0, then by Rolle’s Theorem,
there exists a sequence y,, ¥,,..., strictly decreasing to 0, such that A'(y,) = 0
(xn+1 < yn < xn)'

Now let g(x) = f(x) — 1/(1 + x2). Then g(1/n) =0 for n = 1,2,... . Apply-
ing the result of the preceding paragraph to g, g’,g”,... and invoking the
continuity of g at 0, we see that g¥)(0) = 0 for k = 0,1,2,3,... . Thus,

d* 1
1(0) =W(1 +x2)

The Maclaurin series for 1/(1 + x2) is 3_o,(—D*x?*, and hence f%*X0) is
equal to the values given above.

x=0

A-5(1,9,1,0,0,0,0,0,5,3,72,112)

Solution. Observe that a,, =a,and a,,,;=1-a,,=1—a,.

Suppose that there exist k, m as above, and we may assume m is minimal for
such.

Suppose first that m is odd. We'll suppose a, = a;,,, = @2, = 0, as it will be
clear that the case a, = 1 can be treated similarly. Since either k or k + m is
even, dy;q = Agimi1 = Arr2m+1 = 1. Again, since either k + 1 or k + m + 1 is
eVen, dy ., = Apim+2 = Ariam+2 = 0. By this means, we see that the terms
Aps Qg1 Agyas - - -5 Qg m—1 alternate between 0 and 1. Then since m — 1 is even,
Apom—1=Op+am-1= Ar+3m—1 = 0. But, since either k + m — 1 or k +2m — 1
is even, that would imply that a,,,, = a,,,,, = 1, a contradiction.

Thus, m must be even. Extracting the terms with even indices in

Aptj = Opam+j = Qkv2m+j> for0<j<m-—1,
and using the fact that a, = a, ,, for even r, we get
Ak 2141 = ke p214(m 2 +i = ke j21amis 1010 <i < (m/2) — 1.

(The even numbers > k are 2[k/2],2[k/2] + 2,... .) This contradicts the mini-
mality of m.
Hence, there are no such k£ and m.

A-6 (9,3,4,0,0,0,0,0,0, 10, 32,22, 123)

Solution. Recall first that if points A4, B, C, D are in general position in 3-space,
then a point E lies inside the tetrahedron ABCD if and only if the barycentric
coordinates of E with respect to A, B, C, D are positive. That is, if we (uniquely)
express

E’=WA_'+x}§’+yC_"+zD’, withw+x+y+z=1,

(the arrows indicating consideration of the coordinate triples as vectors), then E is
in the interior of ABCD if and only if w > 0, x > 0, y > 0, and z > 0. Hence, if
E is the origin, then E is in the interior of ABCD if and only if there is a solution
(w, x,y,2) to

0=wA +xB +yC+zD (1)
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with w, x, y, z having the same sign. As the solution space to (1) is 1-dimensional,
this condition holds for one nonzero solution if and only if it holds for all.

Now assume that the center of the sphere is located at the origin and fix the
first chosen point P on the sphere as the north pole, the other three points,
P,, P,,P,, then being random.

We may suppose the choice of each P; is made in two steps, the first choosing a
random diameter Q; O, and the second choosing at random between the end-
points Qi Qi Since the 23 = 8 possible selections of endpoints of the three
diameters are equally likely, each of the 8 tetrahedra PQ, 1192,,Q5j,, J; =1 or
2, are equally likely. We may further suppose that the vertices of each of these
tetrahedra are in general position as the probability of degeneracy is 0. Similarly,
we may suppose that the center of the sphere does not lie on any face of the
tetrahedra.

Let (w, x, y, z) be a nonzero solution to the equation

0 =wP +xQ,, +y0, + 205.
Then, since Ql = —Qiz, the eight equations
0=wP+ lei. +y0,;, + 205,
have respective solutions
(Wax’ y, Z),(W, X, Y7_Z)7(w7x, _y,Z),(W, -X,Y, Z),

(w,x, -y, —z),(w, —x, —y,z),(w, —x,y,—z),(w, —x, -y, —z).

Hence, exactly one of the eight equations has a solution whose coordinates have
the same sign.

It follows that exactly one of these 8 equally likely tetrahedra contains the
center. Thus the probability of including the center is 1/8 for all initial choices of
3 diameters. We conclude that the probability for a random tetrahedron is 1/8.

B-1(145,15,4,0,0,0,0,0,6,14,11,8)

Solution. The smallest possible number of elements in Ag is 2n — 3.

Let x; <x, <---- <x, represent the elements of S. Then
X, +x, X, + x5 X, +x, X, +Xx, X3 +x,
< < -0 < < <
2 2 2 2 2
Bt Wi
2

represent (n — 1) + (n — 2) = 2n — 3 distinct elements of Ay, so A has at least
2n — 3 distinct elements.

On the other hand, if we take S ={1,2,...,n}, the elements of A, are
3,4,2,...,2 There are only 2n — 1) — 2 = 2n — 3 such numbers; thus there
is a set Ag with at most 2n — 3 distinct elements. This completes the proof.
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B-2 (159,10,7,0,0,0,0,0,1,4,13,9)

Solution. We have

Y O(n, k)xk = (1 +x+x2+x3)"
k=0

(1+x3)"1+x)"

5 7)r5 )

j=0 i=0

= ()

j=0i=o0

!

k=0 j=0

Comparing coefficients of x*, we derive the desired result.
B-3 (23,11, 10,0,0,0,0,0,27,24,71,37)

Solution. The area is 4 + . The region of convergence is

an
|/

namely, a (closed) square {(x, y)| — 1 <x, y < 1} of side 2 with (closed) semicir-
cles of radius 1 centered at (+1,0) described on two opposite sides.

If lim, . a,(x,y) = L, then L must satisfy L = (L? + y?)/2; that is, L must
be a root of the equation {

' r’—2r+y*=0. €))
In such case, the equation must have real roots, so the discriminant, 4 — 4y?2, must
be nonnegative. Thus, a necessary condition for (a,(x,y)) to converge is that
Iyl < 1.

Fix |y| < 1. The roots of (1) are then 1 — y/1 —y? and 1 + y/1 — y2, which
are real and nonnegative. As a,(—x, y) = a(x, y), the interval of convergence is
symmetric about x = 0. We shall assume then that x > 0; thus, a,(x, y) > 0, for
all n.

Ifro=1+y1- y?, then a,, (x,y) is less than, equal to, or greater than ro
according to whether a,(x,y) is less than, equal to, or greater than r, (=
r2 +y» /2.
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If a,(x,y) lies in the closed interval [1 — {1 —y%,1 + /1 —y?], that is,
between the roots of (1), then

a,(x, y)2 —2a,(x,y) +y* <0,
so that
1-y1-y% <a,.(x,y) <a,(x,y).

It follows that (a,(x, y)),., converges if x is in the closed interval

[1-V1-y2,1+y1-y%l

If a,(x, y) does not lie in the interval [1 — \/1 -y2,1+ \/1 — y2], then

a,(x, y)2 —2a,(x,y) +y*>0,
so that
a,1(x,¥) > a,(x,y).

Thus, if x, and therefore all a,(x,y), are greater than 1 + /1 — y2, then the
sequence diverges. On the other hand, if x, and therefore all a,(x,y),

lie between 0 and 1 — y1 — y2, the sequence converges monotonically to

1—y1-y2.

To summarize, (a,(x, y)), -, converges if and only if
-l1<y<l1

—(1+\/1—y2)5x51+ 1—y2.

B-4(35,11,13,0,0,0,0,0, 12,5, 48,79)

and

Solution. The smallest possible degree of f(x) is 3984.

By the Division Algorithm, we can write p(x) = (x*> — x)g(x) + r(x), where
q(x) and r(x) are polynomials, the degree of r(x) is less than 3, and the degree of
g(x) is less than 1989. Then

d1992 p(x) d1992 r(x)

dx 992 T BE R b
Now, write r(x)/(x? — x) in the form

A B C
+ — + :
x—1 X x+1

Because p(x) and x> — x have no nonconstant common factor, neither do r(x)
and x> — x, and therefore, ABC # 0. Thus,

192 ( r(x) )

x3—x

dxl992 x3 — X
B C
+ +
(x _ 1)1993 x1993 (x + 1)1993

1992! (

1992’(Ax1993(x + 1) + B(x - )P(x + )P + C(x — 1)Px1?

(x° _x)1993
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Since ABC +# 0, it is clear that the numerator and denominator have no common
factor. Expanding the numerator yields an expression of the form

(A +B + C)x¥6 1+ 1993( A4 — C) x> + 1993(996.4 — B + 996C)x3%* + - -+ .

From A =C =1, B= —2, we see the degree can be as low as 3984. A lower
degree would imply A + B+ C =0, A — C =0, 9964 — B + 996C = 0, imply-
ing that A = B = C = 0, a contradiction.

B-5(62,4,4,0,0,0,0,3,6,2,49,73)

Solution 1. The set {D,/n!},.,
infinity; it is therefore unbounded.

Observing that D, = 3 and D; = 11, we obtain a recursion for D, ;. Subtract-
ing the next-to-last column from the last column and then the next-to-last row
from the last row, one finds

forms a sequence which strictly increases to

31 1 1 0

1 4 1 1 0

1 1 5§ 1 0
Dn+1 = det : : : .

1 1 1 1 n+1 —-n

0 0 O 0 —-n 2n +1

Expanding the determinant in its last row, one obtains
D,.,=(2n+1)D,—n’D,_,.

Letting r, = (D, /n!), the recursion may be written as

2n +1 n
= r, — r,_1,
e
or

(rn+1 _rn) = n+ 1(rn_rn—1)'

We conclude that
3 1

T+t rnvn+1(r3 r2)_n+1‘

Therefore,
Tar1 =Tat (ry =) + (rg=r3) + - +(rpey = 1,)

. 1 1 1
=14+ -4+ -+
2 3 n+1

b

so the sequence (r,) diverges to infinity.
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Solution 2. The problem is the case a, =i + 1 of

1+a, 1 1 1 1
1 1+a, 1 1 1
1 1 1+a, 1 1
D,.(ay,...,a,) = det 1 1 1 1+a, 1
1 1 1 1 1+a,
n n n
= a; + E ].—[a]
i=1 i=1J=1
J#i

This formula follows immediately from the recurrence
D, (ay,...,a,) =a,D,(ay,...,a,_y) +a,_D,(ay,...,a,_,,0).

To prove this recurrence, subtract the (n — 1)st column from the nth column, and
then expand along the nth column.

If none of the a,’s equal 0, we can write the polynomial D,(a;,...,a,_,) in the
form
D . 1 1 1
Aiy...,a,_ =a.a, *** a, _ 4+ — 4+ — 4+ -+
n( 1 n 1) 12 n—1 a, a, a,_,

It follows that
D 1 1 1

n
— =1l+=+ =+ +—,
n! 2 3 n

so the sequence (D, /n!) is unbounded.
B-6 (0,0,0,0,0,0,0,0, 5,4, 39, 155)

Solution 1. We prove the result more generally for complex matrices (because it is
convenient to use i = V— 1 in the proof).

The proof is by induction on n.

If n = 1 then the elements of .# commute so that (iv) cannot be satisfied unless
4= {I}. Suppose that n > 1 and that the result holds for sets of complex matrices
of smaller dimension.

We may assume |.#| > 1, so by (iv), there exist C, D € .# with CD = —DC.
Fix such C, D. As in the first solution, C> = + I. Hence the eigenvalues of C are
+A where A =1 or i. Furthermore, C" =V, ® V_,, where V,,V_, are the
nullspaces of (C — AT),(C + AI) respectively. We observe that if X €.# then

CX=XC= (C+A)X=X(C+A) =V , X=V,;
CX=—-XC=(C+A)X=(-1)X(CFA) =V,  X=V,,.
In particular, since V,D = V_,, dim(V,) = dim(V'_,) = n/2.
Let #/'={Xe#|CX=XC, DX =XD}. If Y .# then exactly one of
Y,YC,YD,YCD is in .#. It follows that |.#'| = |.#|/4.
For X € /, let ¢(X) be the n/2 X n/2 matrix representing, with respect to a
fixed basis of V,, the linear transformation given by v — vX for v € V,. Then ¢ is

injective. To see this: assume ¢(X) = ¢(Y) so that vX = vY for v € V}; but if
v eV_, then vD € V,, so that vXD = vDX = vDY = vYD, which again implies
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vX = vY; since X,Y induce the same transformations of both V, and V_,, it
follows that X =Y. .

If suffices finally to show that ¢(.#"), a set of n/2 X n/2 complex matrices,
satisfies (i), (ii), (iii), (iv), for then, by induction, |¢(#")| < (n/2)?, whence |.#| =
414 = 4lp(A)| < n®

Conditions (i), (ii), (iii) for ¢(.#") are clearly inherited from those of .#Z. To
show (iv), let ¢p(A) € ¢(A4"), with ¢(A) not the n/2 X n/2 identity matrix. Then
A # I (as ¢ is injective) and AB = —BA for some B € .#Z. Let B’ be the element
of {B, BC, BD, BCD} belonging to .#. Since AB' = —B'A, ¢(A)$(B') =
—¢(B)P(A).

Solution 2. Let G be the group {+A | A € .#}. We must show that |G| < 2n?.

The center of G, Z(G), consists of +I, and if X € G\ Z(G), then X has
precisely two conjugates, namely itself and —X. Thus G has 1 + |G| /2 conjugacy
classes, and therefore, G has 1 + |G| /2 inequivalent irreducible representations
over C.

The number of inequivalent representations of dimension 1 is |G/G’|, where
G’ is the commutator subgroup. Since G’ = {+I} = Z(G), this number is |G| /2.

The remaining irreducible representation then has dimension /|G|/2 (since
the sum of the squares of the dimensions of the irreducible representations is |G|).
This representation must be contained in the given representation of G in n X n
matrices, for in all the 1-dimensional representations, Z(G) is in the kernel. Hence

n > yIGl/2, or 2n* > |G]|.

Klosinski: Alexanderson:

Department of Mathematics Department of Mathematics
Santa Clara University Santa Clara University
Santa Clara, CA 95053 Santa Clara, CA 95053
Larson:

Department of Mathematics
St. Olaf College
Northfield, MN 55057

Professor H. B. FINg, of
Princeton University, was fatally
injured by an automobile on the
evening of Friday, December 21
and died about one A.M. on De-
cember 22, 1928. He was seventy
years of age.
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