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The Fifty-Fifth William Lowell Putnam
Mathematical Competition

Leonard F. Klosinski, Gerald L. Alexanderson
and Loren C. Larson

The following results of the fifty-fifth William Lowell Putnam Mathematical
Competition, held on December 3, 1994, have been determined in accordance with
the governing regulations. This annual contest is supported by the William Lowell
Putnam Prize Fund for the Promotion of Scholarship, left by Mrs. Putnam in
memory of her husband, and is held under the auspices of the Mathematical
Association of America.

The first prize, $7,500, was awarded to the Department of Mathematics at
Harvard University. The members of the winning team were: Kiran S. Kedlaya,
Lenhard L. Ng, and Dylan P. Thurston; each was awarded a prize of $500.

The second prize, $5,000, was awarded to the Department of Mathematics at
Cornell University. The members of the winning team were Jeremy L. Bem,
Robert D. Kleinberg, and Mark Krosky; each was awarded a prize of $400.

The third prize, $3,000, was awarded to the Department of Mathematics at the
Massachusetts Institute of Technology. The members of the winning team were
Henry L. Cohn, Adam W. Meyerson, and Thomas A. Weston; each was awarded a
prize of $300.

The fourth prize, $2,000, was awarded to the Department of Mathematics at
Princeton University. The members of the winning team were William R. Mann,
Joel E. Rosenberg, and Michail Sunitsky; each was awarded a prize of $200.

The fifth prize, $1,000, was awarded to the Department of Mathematics of the
University of Waterloo. The members of the winning team were Ian A. Goldberg,
Peter L. Milley, and Kevin Purbhoo; each was awarded a prize of $100.

The five highest ranking individual contestants, in alphabetical order, were
Jeremy L. Bem, Cornell University; J. P. Grossman, University of Toronto; Kiran
S. Kedlaya, Harvard University; William R. Mann, Princeton University; and
Lenhard L. Ng, Harvard University. Each of these was designated a Putnam
Fellow by the Mathematical Association of America and awarded a prize of $1,000,
by the Putnam Prize Fund.

The next five highest ranking contestants, in alphabetical order, were
Soundararajan Kannan, University of Michigan, Ann Arbor; David L. Savitt,
University of British Columbia; Daniel K. Schepler, Washington University,
St. Louis; Noam M. Shazeer, Duke University; and Hong Zhou, Harvard Unive-
rsity; each was awarded a prize of $500.

The next six highest ranking contestants, in alphabetical order, were Alexandru
D. Ionescu, Massachusetts Institute of Technology; Robert D. Kleinberg, Cornell
University; Jacob A. Rasmussen, Princeton University; Andrew H. Schultz, Johns
Hopkins University; Dylan P. Thurston, Harvard University; and Zhaohui Zhang,
Yale University; each was awarded a prize of $250.
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The next nine highest ranking contestants, in alphabetical order, were Henry L.
Cohn, Massachusetts Institute of Technology; Ian A. Goldberg, University of
Waterloo; Adam Kalai, Harvard University; Serban M. Nacu, Harvard University;
Joel E. Rosenberg, Princeton University; Mikhail V. Shubov, Texas Tech Univer-
sity; Jade P. Vinson, Washington University, St. Louis; Stephen S. Wang, Harvard
University; and Jonathan L. Weinstein, Harvard University. Each was awarded a
prize of $100.

The following teams, named in alphabetical order, received honorable mention:
University of Nebraska, Lincoln, with team members Scott Annin, Igor V.
Pavlovsky, and Eric M. Smith; New York University, with team members Igor
Berger, Yevgeniy Dodis, and Mikhail Kogan; University of Toronto, with team
members J. P. Grossman, Edward Leung, and Naoki Sato; Washington University,
St. Louis, with team members Ben Gum, Daniel K. Schepler, and Jade P. Vinson;
and Yale University, with team members Gautam Chinta, Matthew Frank, and
Zhaohui Zhang.

Honorable mention was achieved by the following thirty individuals named in
alphabetical order: Jared E. Anderson, University of Victoria; Federico Ardila,
Massachusetts Institute of Technology; Bradley S. Bart, University of Waterloo;
Ruth A. Britto-Pacumio, Massachusetts Institute of Technology; Robert H. Cheng,
University of British Columbia; Yevgeniy Dodis, New York University; Ron D.
Dror, Rice University; Alex Heneveld, Princeton University; Randy W. Ho, Uni-
versity of Arizona; Jason A. Howald, Miami University; Sergey M. Ioffe, Mas-
sachusetts Institute of Technology; Dean W. Jens, University of Chicago; Joanna
L. Karczmarek, Queen’s University; Mikhail Kogan, New York University; Botond
Kd&szegi, Harvard University; Mark Krosky, Cornell University; Daniel T. Martin,
Carleton College; Olexei Ivanovich Motrunich, University of Missouri, Columbia;
Akira Negi, University of North Carolina, Chapel Hill; An T. Nguyen, University
of Texas, Austin; Royce Y. Peng, Harvard University; Kevin Purbhoo, University
of Waterloo; Lawrence P. Roberts, Washington University, St. Louis; NNaoki Sato,
University of Toronto; Sam Spencer, Rice University; Jason M. Starr, University of
California, Berkeley; Mark A. Van Raamsdonk, University of British Columbia;
David R. Wasserman, University of California, San Diego; Thomas A. Weston,
Massachusetts Institute of Technology; and Jeffrey S. Willson, University of
Chicago.

The other individuals who achieved ranks among the top 107, in alphabetical~
order of their schools, were: Brown University, Andrew Brecher; California Insti-
tute of Technology, Wei-Hwa Huang, Roman Muchnik; California Polytechnic
State University, San Luis Obispo, Robert B. Mathews; University of California,
Santa Barbara, Aaron S. Cohen; Carleton College, Curtis Z. Mitchell; Case
Western Reserve University, Neil A. Rubin; Colgate University, Jean-Frangois R.
Lafont; Dartmouth College, Yuan Shen; Duke University, Robert R. Schneck;
Harvard University, Manjul Bhargava, Dean R. Chung, Joe B. Fendel, Sergey V.
Levin, Paul Li, Harrison K. Tsai, Jiff J. L. Vanicek; Harvey Mudd College, Aaron
F. Archer, Kan Yasuda; University - of Illinois, Champaign-Urbana, Ivan
Auramovic, Kwong Shing Lin; Massachusetts Institute of Technology, Adam W.
Meyerson, Michael B. Schulz, Michael R. Tehranchi, Aleksey Zinger; McGill
University, Jacob Eliosoff; University of Nebraska, Lincoln, Eric M. Smith; New
York University, Igor Berger; University of North Carolina, Chapel Hill, Paul E.
Rube; Northwestern University, Carol R. James; Princeton University, Paul J.
Ellis, Michael J. Goldberg, Mark W. Lucianovic; Queen’s University, Peter
Gregory Zion; Reed College, Gerald D. Larson; Rice University, Ashley M.
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Reiter; University of Saskatchewan, Trevor N. Green; University of the South,
Qingshan Luo; Stanford University, Robert G. Au, Heyning A. Cheng, Loren L.
Looger; Suffolk University, Anna V. Petrovskaya; Vanderbilt University, Jason D.
Hughes; Washington University, St. Louis, Ian F. Pulizzotto, Erik N. Vee; Univer-
sity of Waterloo, Jason P. Bell, Jie J. Lou, Peter L. Milley, Lousindi R. Sabourin;
Williams College, Jason R. Schweinsberg, Edward W. Welsh; and Yale University,
Matthew Frank.

The Elizabeth Lowell Putnam Prize, named for the wife of William Lowell
Putnam and to be “awarded periodically to a woman whose performance on the
Competition has been deemed particularly meritorious,” is awarded this year to
Ruth A. Britto-Pacumio of the Massachusetts Intitute of Technology. The winner
is awarded a prize of $500.

There were 2,314 individual contestants from the 410 colleges and universities
in Canada and the United States in the competition of December 3, 1994. Teams
were entered by 284 institutions. The Questions Committee for the fifty-fifth
competition consisted of Eugene M. Luks, University of Oregon, chair; Fan
Chung, Bellcore; and Mark I. Krusemeyer, Carleton College; they composed the
problems listed below and were most prominent among those suggesting solutions.

PROBLEMS

Problem A-1. Suppose that a sequence a,, a,, as, ... satisfies 0 <a, <a,, + a,,,;
for all n > 1. Prove that the series X, _,a, diverges.

Problem A-2. Let A be the area of the region in the first quadrant bounded by the
line y = 3x, the x-axis, and the ellipse 3x? + y* = 1. Find the positive number m
such that A is equal to the area of the region in the first quadrant bounded by the
line y = mx, the y-axis, and the ellipse 3x2 + y? = 1.

Problem A-3. Show that if the points of an isosceles right triangle of side length 1
are each colored with one of four colors, then there must be two points of the
same color which are at least a distance 2 — Y2 apart.

Problem A-4. Let A and B be 2 X 2 matrices with integer entries such that A4,
A+ B, A+ 2B, A+ 3B,and A + 4B are all invertible matrices whose inverses °
have integer entries. Show that A + 5B is invertible and that its inverse has
integer entries.

Problem A-5. Let (r,),., be a sequence of positive real numbers such that

lim, ,, r, = 0. Let S be the set of numbers representable as a sum
r bt

i1994 2

with i, <i, < =+ <ig. Show that every nonempty interval (a, b) contains a
nonempty subinterval (c, d) that does not intersect S.

Problem A-6. Let f,, f,,..., fi, be bijections of the set of integers such that for
each integer n, there is some composition f; o f; o - f, of these functions
(allowing repetitions) which maps 0 to 7. Consider the set of 1024 functions

F={flrefire o fie}),
e, =0or1for1 <i<10.(f° is the identity function and f;' = f;.) Show that if 4
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is any nonempty finite set of integers, then at most 512 of the functions in & map
A to itself.

Problem B-1. Find all positive integers that are within 250 of exactly 15 perfect
squares.

Problem B-2. For which real numbers ¢ is there a straight line that intersects the
curve

y=x*+9x+x?+9x+4
in four distinct points?

Problem B-3. Find the set of all real numbers k with the following property: For
any positive, differentiable function f that satisfies f'(x) > f(x) for all x, there is
some number N such that f(x) > e** for all x > N.

Problem B-4. For n > 1, let d, be the greatest common divisor of the entries of

A" — I, where
_[3 2 (1 0
A—(4 3) and I—(O 1).

Show that lim,, ., d, = .

n

Problem B-5. For any real number «, define the function f,(x) = |ax]. Let n be a
positive integer. Show that there exists an « such that for 1 <k <n,

fi(n?) =n* —k = fou(n?).
Problem B-6. For any integer a, set
n, = 101a — 100 - 2°.

Show that for 0 <a,b,c,d <99, n, +n, =n,+ n, (mod10100) implies
{a, b} = {c, d}.

SOLUTIONS. In the 12-tuples (n,y, ny, ng, n4, ng, ns, Rys Ny, My Ny, Mg, N _,) fol-
lowing each problem number below, n; for 10 > i > 0 is the number of studengs
among the top 206 contestants achlevmg i points for the problem and n_, is the
number of those not submitting solutions.

A-1 (59,59,54,21,0,0,0,0,8,0,3,2)

Solution. Let b, = a,, b, = a, + a;, by = a, + a5 + a; + a,, and in general, b, =
Ayt + Ayn-1,q + o+ +ay._,. AN easy induction, using the condition a, < a,, +
a,,., shows that b, < b, , for all n > 1. Thus, for any positive integer ¢,

20—1

t
Za> Za Y b, >th, =ta,.
n=1

This shows that Z°,;’=1a,, dlverges.

A-2" (169,3,2,0,0,0,0,0,1,3,22,6)

Solution. The linear transformation given by x, = 3x, y, =y transforms the
region R bounded by y = ix, the x-axis, and the ellipse sx? + y* =1 into the
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region R’ bounded by y, = 3x,, the x,-axis, and the circle x? + y? = 1; it also
transforms the region S bounded by y = mx, the y-axis, and gx* + y* = 1 into the
region §’ bounded by y, = 3mx,, the y,-axis, and the circle. Since all areas are
multiplied by the same (nonzero) factor under the transformation, R and S have
the same area if and only if R’ and S’ have the same area. However, we can see by
symmzetry about the line y, = x, that this happens if and only if 3m = 2, that is,
m = g.

A-3 (0,10,67,0,0,0,0,0,30,31, 40, 28)

Solution. Suppose the vertices of the isosceles right triangle are (0, 0), (1, 0), (0, 1).
Suppose the points of the triangle can be colored in four colors such that points of
the same color are always less that a distance 2 — V2 apart. Then the four points
0,1, 0,v2 —1), (Y2 —1,0), (1,0) must have different colors, say colors
A, B, C, D respectively. The point (0,0) must be of color B or C. Without loss of
generality, say (0, 0) is of color B. Then the point (2 — 1,2 — v2) is of distance
at least 2 — V2 to points of each of the four colors, and this is impossible.

A-4 (12,17,20,0,0,0,0,0, 15,3, 43, 96)

Solution. A matrix C with integer entries has an inverse with integer entries if and
only if det C = + 1. Therefore, if we consider the function f defined by f(x) =
det(A4 + xB), we know that the five values f(0), f(1), f(2), f(3), and f(4) must all
be 1 or —1, so f takes on at least one of those values three or more times.
However, f(x) is a polynomial of degree < 2 in x, and so f can only take on a
value more than twice if f is constant. Thus f(x) is one of the constants 1 and —1;
in particular, det(A4 + 5B) = +1, so A + 5B has an inverse with integer entries.

A-5 (20,13,4,0,0,0,0,0,6,2,57,104)

Solution 1. It suffices to show that any sequence in § contains a monotonically
nonincreasing subsequence. For then, letting (¢,),., be any strictly inncreasing
sequence within (a, b), some (in fact, all but a finite number) of the intersections
SN (,t,,,) would have to be empty, otherwise one could form a strictly
increasing sequence (s,), ., by taking s, € S N (z,,¢,,,).

Let (s,), -, be a sequence in S. For n = 0,1,2,... write ~

Sy =Tm 1y T oy T FTn, 1004 with  f(n,1) <f(n,2) < -+ <f(n,1994).

The sequence (y, 1)), has a monotonically nonincreasing subsequence (since
(r,), s is a positive sequence converging to 0). Thus we may replace (s,), . o by a
subsequence for which (7, 1)), , is monotonically nonincreasing. In a similar
fashion, we pass to subsequences so that, successively, C:’:lCh of (.rf(n,Z))n'z 05
Fron3yn s 05005 (s, 1994) )uso may be assumed to pe monotonically nonincreasing.
The resulting (s,), . , is monotonically nonincreasing.

Solution 2. Let C be the set {r,},., U {0}. Since C is compact, the set S’ of
numbers representable as a sum of 1994 elements of C is also compact (for
example, it is a continuous image of C'**). Clearly S c §'.

Let (a, b) be a nonempty open interval. Since S’ is countable, (a, b)\ S’ is
nonempty; it is open since S’ is closed. Hence (a, b) \ S’ includes a nonempty
open interval.

Comment: This proof generalizes to give the same conclusion for any convergent
sequence (r,), 5 ¢
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A-6 (5,8,10,0,0,0,0,0,7,4,34,138)

Solution. Let A be a nonempty finite subset of the integers Z. By the Pigeonhole
Principle, any bijection of Z which maps A to itself must be a bijection when
restricted to A; in particular, its inverse also maps A to itself. Note tha tnot all the
bijections f,, f,, ..., fio can map A to itself, for otherwise if 0 € A we could not
map 0 to any n & A by a composition f; o f; o -+ f; , while if 0 & 4, we could
not map 0 to any n € A by such a composition.

Let k be the smallest integer such that f, does not map A to itself, and
suppose that more than 512 of the functions % map A to itself. We can write 7 as
a disjoint union of unordered pairs of functions such that two compositions
férofgro e oftp and ffto fd2o - o filo are in the same pair when they differ
only in the k-th exponent; that is, when e; =d; for i # k. By the Pigeonhole
Principle, there is then at least one of these 512 pairs in which both functions map
A to itself. Since all f, with [ > k also map A to itself, we can use composition
with the inverses of f;, as needed, to conclude that for some ey,...,e; 1,
F,=ffroff2o o fiqy and F, =f{1ofs20 o fiky o f, both map A to itself.
But then F; !¢ F, = f, also maps A to itself, a contradiction.

B-1 (45,26,57,0,0,0,0,0,42,28,6,2)

Solution. Answer: {N|315 < N < 325 or 332 < N < 350}.

Assume N > 0 is within 250 of the 15 squares m?,(m + 1)%,...,(m + 14)?,
where we can take m > 0. In fact, m will then be positive, otherwise N would be
within 250 of the additional square 225. We have the necessary and sufficient
conditions

(m +14)> <N + 250 < (m + 15)> — 1,
(m—1)>+1<N - 250 <m?.
Subtracting (reversing inequalities in the second line), we get

28m + 196 < 500 < 32m + 222,
which implies m = 9 or 10.
If m=9,
232 < N + 250 < 24* — 1,
82 +1<N-—25 <92,
or 315 < N < 325.
If m =10,
242 < N + 250 <25 — 1,
92 +1 <N —250 <102,
or 332 < N < 350.

B-2 (28,8,49,0,0,0,0,0, 56,10, 39, 16)

Solution. Answer: For the real numbers ¢ with ¢ < 243 /8.

The constant term and the coefficient of x in a quartic p(x) are irrelevant in
determining whether there is a line intersection y = p(x) in four points. We may
also replace p(x) by p(x — a) for any real a. Thus, we may replace the given quartic
p(x) =x* +9x3 + cx? + 9x + 4 with p(x — 9/4) =x* + (c — 243/8)x* + -,
and drop the last two coefficients (we need never calculate them).
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The problem then is to determine the values of ¢ for which there is a straight
line that intersects y = x* + (¢ — 243/8)x? in four distinct points. The result is
now apparent from the shapes of the curves y = x* + ax?. For example, we may
note that when a < 0, this “W-shaped” curve has a relative maximum at x = 0, so
that horizontal lines y = —¢ for small positive & intersect the curve in four
points, while for a > 0, the curve is always concave upward, so that no line can
intersect it in more than two points.

B-3 (27,10,8,5,0,0,0,2,45,49, 15, 45)

Solution. The desired set is (—, 1).

To show this, first note that if £ > 1 were in the set, then k = 1 would also be
in the set. However, if f is any function of the form f(x) = g(x)e*, where g is a
positive, increasing, differentiable function bounded by 0 and 1 (for example,
g(x) = (1/m)arctan x + 3), we have f'(x) = e*(g'(x) + g(x)) > f(x) and f(x) <
e* for all x, so kK = 1 is not in the set.

On the other hand, if f'(x) > f(x) for all x, then (since f is positive) we have

f'(x)

f(x)

=f'(1) x

‘[Omdt>f01‘dt for all x > 0,

log( f(x)) > x + log(f(0)) forall x >0,
f(x) > f(0)e* forall x > 0.

If k is any number less than 1, then for large enough x we will have f(0)e* > e**
(since f(0) is positive), which shows that k is in the set.

>1 forall x,

B-4 (15,1,4,0,0,0,0,0,5,22,71,88)

Solution 1. From experimentation (and then an easy induction on n) we see that

A" has the form
A" an bﬂ
“\2b, a

with a, odd, and, since det A" = 1, we have a2 — 1 = 2b2% Thus a, — 1 divides
2b;, so that d, = ged(a, — 1,b,) > y/(a, — 1)/2. Since lim,_, a, == (eg.,

a, > 3a,_,), the result follows.

Solution 2. Define the sequence r(, 7, r,,... by ry=0,r, = 1,and r, = 6r,_, —

r._, for k > 1. We first show by induction on k that
A" =T=r (A% =A%) —r (A1 — A1) fork > 0. (1)

This is clear for k = 0 and, for the inductive step, using A% — 64 + I = 0 (the
characteristic equation), we have

e (A" = AF) — (AT - 4k
= e (6477571 — AP k=2) (6 4K*T — 4K¥2)) g (AP kL ko)
= (6rsy — ) (AR =AY — g (AT — 4Rt2)
= g (ATTETT ARy o (gnked k2
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Applying (1) with k = |n /2|, we obtain
e Ty (A1 — 47271, if n is even,
(Fns1y 2 F Ty 2) (ATTD/2 — AU=D/2) - if s odd.

In either case, the entries of A" — I have a common factor that — oo since
lim, ,,r, =« (eg., r, > 5r,_; for n > 1).

Solution 3. We know that the entries of A" are each of the form a;A] + a, A}
where A, =3 + 22 and A, =3 — 2y2 (the eigenvalues of A). So, using the
entries for n = 1,2, we derive

XEN NN
2 2/2
AN =N AL+ A

V2 2

Observing that A, = u?, where w, = 1 + V2 and pu, = 1 — V2, we see

ar =

AT+ AS Al — AS

_1’—
2 22

(i —us)? (wh— mh)(ul + MS))

d, = gcd

= gcd

2 ’ 2/2
M — M5 [l T S T
V2 V2 02

since (u — u2)/ V2, and (u! + w3)/2 are rational integers. As |u,|> 1 and
| w,| < 1, we conclude lim,, ,,, (u} — u3) = . Hence, lim,, ., d, = .

ged

Comment: The proof extends to establishing the same result for integral matrices
~
A= (‘: z) of determinant 1 and [trace(A4)| > 1 (the latter to guarantee r, — ©

where r, = trace(A)r,_; —r,_,). A similar argument gives the same conclusion
for the entries of 4" — I.

B-5 (11,4,4,0,0,0,0,0,32,10, 15, 130)
Solution. For any a > 0 and any positive integer k, we have
fk(n?) =|a|a| | an?| |l] <la-a- an?| =f(n?),
so it is enough to show that there exists an «a > 0 such that for 1 <k <n,
f¥(n*y =2n®> —k and afn*<n®—-k+1.

For k = 1, the first of these two inequalities yields an® > n* — 1; we will show
that o = (n?> — 1)/n? = 1 — 1/n? will do. Using this value of a, we use induction
on k to show that f*(n?) > n? — k for 1 < k < n; in fact, if this holds for k, we
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have

£ () 2 fo(n? = k)

=)
o el

=n*—(k+1)

completing the induction.
To show that a*n? < n* — k + 1, note that this inequality is clear when n = 1
and hence £k = 1, @ = 0; for n > 1, the inequality is equivalent to

. k—1
a*<1-— 5
n
nt—1\" ko1
< - )
n? n?
n?2 \* 1
n?—1 > k-1
2
2\ oo 1 n*—1
< .
n* -1 n? k-1 n—k+1
1- 2
n
Now,
2 k=1 k-1 2
n . 1 ) k-1 n“+k-—2
=1+ >1+ - ,
n?—1 n? -1 n?—1 n? -1

and it is easy to see by cross-multiplication that for 1 < k < n,
n*+k-2 n?—1
2 > = )
n-—1 n—k+1

I~

completing the proof.

B-6 (14,11,1,0,0,0,0,0, 16, 10, 50, 104)

Solution. Observe that n, = a (mod 100) and n, = 2 (mod 101).
Suppose n, + n, = n, + n, (mod 10100). Then n, + n, = n, + n, (mod101),
$O

29 + 2% = 2° + 2¢ (mod 101). (1)

Also, n, + n, = n, + n, (mod 100), so a + b = ¢ + d (mod 100), and therefore, by
Fermat’s Theorem (since 101 is prime), 2°*> = 2¢*¢ (mod 101). That is,

29.2b =2¢.2% (mod 101). (2)
From (1) and (2), we see that {2%,2°} and {2¢,29} are the same set modulo 101,
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namely, the set of roots of the quadratic polynomial (x — 2} (x —2°) =x* —
(2% + 29)x + 292° = (x — 2°)x — 29) in the field Z,,. To see that {a, b} = {c, d},
it suffices to show that the numbers 2¢ for a € {0,1,...,99} are distincnt modulo
101. That is, we need to show that the order of 2 modulo 101 is precisely 100. For
this, it suffices to show that 22° # 1 (mod 101) and 2% # 1 (mod 101). We have
210 — 1024 = 14 (mod 101), so that 2% = 14> = —6 (mod 101), from which 2% =
220220210 = 36.14 = —1 (mod 101).

Klosinski / Alexanderson: Larson:

Department of Mathematics Department of Mathematics

Santa Clara University St. Olaf College

Santa Clara, CA 95053 Northfield, MN 55057
PICTURE PUZZLE

(from the collection of Paul Halmos)

e mﬁ‘”’«?

Hint: He doesn’t look the same now as he did in 1951.
(see page 690)
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