Putnam 2003

A1. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$n = a_1 + a_2 + \ldots + a_k;$$

with k an arbitrary positive integer and $a_1 \le a_2 \le \cdots \le a_1 + 1$? For example, with n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

Solution. We use induction to prove that the number N(n) of ways is n. For n = 1 this is clear. By gathering the equal terms (either a_1 or $a_1 + 1$), each equation $n = a_1 + a_2 + \ldots + a_k$ for given n and k can be uniquely rewritten in the form

$$E(n, k, a, r) : n = ra + (k - r) (a + 1)$$

for some $r \in \{1, ..., k\}$ which depends uniquely on k, a, and n (indeed, r = k(a+1) - n). Let

$$\mathcal{E}_{n} := \left\{ E\left(n, k, a, r\right) : E\left(n, k, a, r\right) \text{ holds for some } (k, a, r) \in \mathbb{Z}_{+}^{3} \right\}.$$

Note that

$$n = ra + (k - r) (a + 1) \Rightarrow$$

 $n + 1 = (r - 1) a + (k - (r - 1)) (a + 1).$

Thus, we have a map

$$F: \mathcal{E}_n \to \mathcal{E}_{n+1}$$

defined by

$$F(E(n, k, a, r)) := \begin{cases} E(n+1, k, a+1, k) & r = 1 \\ E(n+1, k, a, r-1) & 2 \le r \le k \le n. \end{cases}$$

Note that F is clearly 1-1. It is not onto, since it misses the value

$$E(n+1, n+1, 1, n+1)$$
,

but this is the only value it misses, since

$$E(n+1, k, a, s) = \begin{cases} F(E(n, k, a, s+1)) & \text{if } s \le k-1 \\ F(E(n, k, a-1, k)) & \text{if } s = k \le n. \end{cases}$$

Hence, $N(n) = n \Rightarrow N(n+1) = n+1$.

A2. Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative real numbers. Show that

$$(a_1 a_2 \cdots a_n)^{\frac{1}{n}} + (b_1 b_2 \cdots b_n)^{\frac{1}{n}} \le ((a_1 + b_1) (a_2 + b_2) \cdots (a_n + b_n))^{\frac{1}{n}}.$$

1

Solution. Using the Lagrange multiplier method, for $y_i \ge 0$ (i = 1, ... n), the maximum of the function $y_1 y_2 \cdots y_n$ with the constraint $y_1 + y_2 + \cdots + y_n = 1$, is achieved when $y_1 = y_2 = \cdots = y_n = \frac{1}{n}$. Thus,

$$(y_1y_2\cdots y_n)^{\frac{1}{n}} \le \frac{1}{n}$$
 if $y_1 + y_2 + \cdots + y_n = 1$ and $y_i \ge 0$ $(i = 1, \dots n)$.

For $x_i \ge 0$ (i = 1, ..., n) and $s = x_1 + x_2 + \cdots + x_n$, taking $y_i = x_i/s$, we obtain

$$\left(\frac{x_1}{s} \frac{x_2}{s} \cdots \frac{x_n}{s}\right)^{\frac{1}{n}} \leq \frac{1}{n} \text{ or}$$

$$\left(x_1 x_2 \cdots x_n\right)^{\frac{1}{n}} \leq \frac{1}{n} \left(x_1 + x_2 + \cdots + x_n\right), \tag{1}$$

which says that the geometric mean is not greater than the arithmetic mean. We may assume that $a_i + b_i > 0$ for all i, since the result is clearly true if $a_i + b_i = 0$ for some i. Apply (1) for $x_i = \frac{a_i}{a_i + b_i}$ to get

$$\left(\frac{a_1}{a_1+b_1} \cdot \frac{a_2}{a_2+b_2} \cdots \frac{a_n}{a_n+b_n}\right)^{\frac{1}{n}} \le \frac{1}{n} \left(\frac{a_1}{a_1+b_1} + \frac{a_2}{a_2+b_2} + \cdots + \frac{a_n}{a_n+b_n}\right).$$

Now apply it for $x_i = \frac{b_i}{a_i + b_i}$ to get

$$\left(\frac{b_1}{a_1+b_1} \cdot \frac{b_2}{a_2+b_2} \cdots \frac{b_n}{a_n+b_n}\right)^{\frac{1}{n}} \le \frac{1}{n} \left(\frac{b_1}{a_1+b_1} + \frac{b_2}{a_2+b_2} + \cdots + \frac{b_n}{a_n+b_n}\right).$$

Adding the above, we get

$$\left(\frac{a_1}{a_1+b_1} \cdot \frac{a_2}{a_2+b_2} \cdots \frac{a_n}{a_n+b_n}\right)^{\frac{1}{n}} + \left(\frac{b_1}{a_1+b_1} \cdot \frac{b_2}{a_2+b_2} \cdots \frac{b_n}{a_n+b_n}\right)^{\frac{1}{n}} \le \frac{1}{n} \cdot n = 1$$

Now multiply by $((a_1 + b_1) (a_2 + b_2) \cdots (a_n + b_n))^{\frac{1}{n}}$.

A3. Find the minimum value of

$$\left|\sin x + \cos x + \tan x + \cot x + \sec x + \csc x\right|$$

for real numbers x.

Solution.

$$\tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{1}{\cos x \sin x}$$

$$\sec x + \csc x = \frac{1}{\cos x} + \frac{1}{\sin x} = \frac{\sin x + \cos x}{\cos x \sin x}.$$

Let $u = \sin x + \cos x$ and note that $-\sqrt{2} \le u \le \sqrt{2}$. Then

$$u^{2} = \sin^{2} x + 2\cos x \sin x + \cos^{2} x = 1 + 2\cos x \sin x$$

$$\Rightarrow \cos x \sin x = \frac{u^{2} - 1}{2}.$$

Thus,

$$\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = u + \frac{2}{u^2 - 1} + \frac{2u}{u^2 - 1}$$

$$= u + \frac{2(u+1)}{u^2 - 1} = u + \frac{2(u+1)}{(u+1)(u-1)} = u + \frac{2}{u-1} := f(u).$$

We have

$$f'(u) = 1 - \frac{2}{(u-1)^2} = 0 \text{ for } u = 1 \pm \sqrt{2}$$

Now,

$$f\left(1 \pm \sqrt{2}\right) = 1 \pm \sqrt{2} + \frac{2}{1 \pm \sqrt{2} - 1} = 1 \pm 2\sqrt{2}.$$

We check the endpoints:

$$f\left(\sqrt{2}\right) = \sqrt{2} + \frac{2}{\sqrt{2} - 1} = \sqrt{2} + \frac{2\left(\sqrt{2} + 1\right)}{\left(\sqrt{2} - 1\right)\left(\sqrt{2} + 1\right)}$$

$$= \sqrt{2} + 2\left(\sqrt{2} + 1\right) = 2 + 3\sqrt{2} \text{ and}$$

$$f\left(-\sqrt{2}\right) = -\sqrt{2} + \frac{2}{-\sqrt{2} - 1} = -\sqrt{2} - \frac{2\left(\sqrt{2} - 1\right)}{\left(\sqrt{2} + 1\right)\left(\sqrt{2} - 1\right)}$$

$$= -\sqrt{2} - 2\left(\sqrt{2} - 1\right) = 2 - 3\sqrt{2}.$$

We have

$$\min \left\{ \left| 1 - 2\sqrt{2} \right|, \left| 1 + 2\sqrt{2} \right|, \left| 2 - 3\sqrt{2} \right|, \left| 2 + 3\sqrt{2} \right| \right\}$$

$$= \min \left\{ 2\sqrt{2} - 1, 3\sqrt{2} - 2 = \left(2\sqrt{2} - 1 \right) + \sqrt{2} - 1 \right\} = 2\sqrt{2} - 1 \approx 1.828.$$

Thus, the answer is $2\sqrt{2} - 1$.

A4. Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$\left|ax^2 + bx + c\right| \le \left|Ax^2 + Bx + C\right|$$

for all real numbers x. Show that

$$\left| b^2 - 4ac \right| \le \left| B^2 - 4AC \right|.$$

Solution. By replacing a, b, c by -a, -b, -c, we may assume that a > 0, and similarly we may assume that A > 0. Note that none of the above absolute values are affected by such replacements. For large x

$$|ax^2 + bx + c| \le |Ax^2 + Bx + C| \Rightarrow |a + bx^{-1} + cx^{-2}| \le |A + Bx^{-1} + Cx^{-2}|$$

 $\Rightarrow a \le A$, taking the limit as $x \to \infty$.

Let $D := B^2 - 4AC$ and $d := b^2 - 4ac$.

There are three cases

(i)
$$D \ge 0$$
, (ii) $D < 0$ and $d > 0$, (iii) $D < 0$ and $d < 0$

Case (i) $D \ge 0$: If $D \ge 0$, then $Ax^2 + Bx + C$ has real zeros $r_2 \ge r_1$, and by the quadratic formula, $r_2 - r_1 = \frac{\sqrt{D}}{A}$. Note that r_1 and r_2 are also zeros of $ax^2 + bx + c$, since $|ax^2 + bx + c| \le |Ax^2 + Bx + C|$. Thus,

$$\frac{\sqrt{d}}{a} = r_2 - r_1 = \frac{\sqrt{D}}{A} \Rightarrow \sqrt{d} = \frac{a\sqrt{D}}{A} \le \sqrt{D} \Rightarrow d \le D.$$

Case (ii) D < 0 and d > 0. If D < 0, then $0 < Ax^2 + Bx + C$ and

$$|ax^{2} + bx + c| \le |Ax^{2} + Bx + C| = Ax^{2} + Bx + C$$

Thus, $\pm (ax^2 + bx + c) \le Ax^2 + Bx + C$ and so

$$(A \pm a) x^2 + (B \pm b) x + (C \pm c) > 0$$

Hence

$$(B \pm b)^2 - 4(A \pm a)(C \pm c) \le 0,$$

 $(B^2 - 4AC) + (b^2 - 4ac) \le \pm (-2Bb + 4Ac + 4aC).$

Since one of $\pm (-2Bb + 4Ac + 4aC)$ is ≤ 0 , we have

$$D+d \leq 0$$
 and so $|d|=d \leq |D|$.

Case (iii) D < 0 and d < 0: In this case, $0 \le ax^2 + bx + c \le Ax^2 + Bx + C$ and consequently

$$\min\left\{ax^2 + bx + c\right\} \le \min\left\{Ax^2 + Bx + C\right\}$$

Now,

$$\min \left\{ ax^2 + bx + c \right\} = a \left(\frac{-b}{2a} \right)^2 + b \left(\frac{-b}{2a} \right) + c = \frac{4ac - b^2}{4a} = \frac{-d}{4a}.$$

Thus,

$$\frac{|d|}{4a} = \frac{-d}{4a} \le \frac{-D}{4A} = \frac{|D|}{4A} \text{ and } |d| \le \frac{a}{A} |D| \le |D|.$$

A5. A Dyck *n*-path is a lattice path of *n* upsteps (1, 1) and *n* downsteps (1, -1) that starts at the origin O and never dips below the *x*-axis. A return is a maximal sequence of contiguous downsteps that terminates on the *x*-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck (n-1)-paths.

Solution. Let us denote a Dyck *n*-path by its sequence of steps v_1, v_2, \ldots, v_{2n} , where $v_i = (1, 1)$ or (1, -1). Denote the set of Dyck *n*-paths by D_n . We define a function

$$F: D_{n-1} \to D_n (\sim e) := D_n \setminus \{\text{paths in } D_n \text{ with a return of even length}\}$$

If $v_1, v_2, \dots, v_{2(n-1)} \in D_{n-1} (\sim e)$, then we set

$$F(v_1, v_2, \dots, v_{2(n-1)}) = (1, 1), (1, -1), v_1, v_2, \dots, v_{2(n-1)} \in D_n (\sim e).$$

If $v_1, v_2, \ldots, v_{2(n-1)} \in D_{n-1} \setminus D_{n-1}$ ($\sim e$) (i.e., a Dyck (n-1)-path with a return of even length), let the final return of even length end with the step v_f . Note that in the Dyck n-path $(1,1), v_1, v_2, \ldots, v_f, (1,-1), v_{f+1}, \ldots, v_{2(n-1)}$ the original subpath v_1, v_2, \ldots, v_f has been translated up one unit and to the right one unit so that $(1,1), v_1, v_2, \ldots, v_f, (1,-1)$ has only one return, namely a final return of odd length, while (by choice of v_f) $v_{f+1}, \ldots, v_{2(n-1)}$ has no return of even length. Thus, for $v_1, v_2, \ldots, v_{2(n-1)} \in D_{n-1} \setminus D_{n-1}$ ($\sim e$), we set

$$F(v_1, v_2, \dots, v_{2(n-1)}) := (1, 1), v_1, v_2, \dots, v_f, (1, -1), v_{f+1}, \dots, v_{2(n-1)} \in D_n (\sim e).$$

To show that F is a bijection, we need to find an inverse, say G, for F. Let $v_1, v_2, \ldots, v_{2n} \in D_n (\sim e)$ and let v_1, v_2, \ldots, v_{2i} be the first Dyck subpath of v_1, v_2, \ldots, v_{2n} . Then set

$$G(v_1, v_2, \dots, v_{2n}) = v_2, \dots, v_{2i-1}, v_{2i+1}, \dots, v_{2n}.$$

Here, if $i = 1, v_2, \ldots, v_{2i-1}$ is empty, and $G(v_1, v_2, \ldots, v_{2n}) = v_3, \ldots, v_{2n}$. Note that since $v_1, v_2, \ldots, v_{2n} \in D_n$ ($\sim e$), the first return (if any) of $G(v_1, v_2, \ldots, v_{2n}) = v_2, \ldots, v_{2i-1}, v_{2i+1}, \ldots, v_{2n}$, ends in v_{2i-1} , has even length, and is the last return of even length, in which case $F(G(v_1, v_2, \ldots, v_{2n})) = v_1, \ldots, v_{2n}$

 v_1, v_2, \ldots, v_{2n} . If $v_2, \ldots, v_{2i-1}, v_{2i+1}, \ldots, v_{2n}$ has no return of even length, then it must have been that i = 2, in which case we also have $F(G(v_1, v_2, \ldots, v_{2n})) = (1, 1), (1, -1), v_3, \ldots, v_{2n} = v_1, \ldots, v_{2n}$. For $G(F(v_1, v_2, \ldots, v_{2(n-1)}))$, note that if $v_1, v_2, \ldots, v_{2(n-1)} \in D_{n-1}(\sim e)$, then

$$G(F(v_1, v_2, \dots, v_{2(n-1)})) = G((1, 1), (1, -1), v_1, v_2, \dots, v_{2(n-1)}) = v_1, v_2, \dots, v_{2(n-1)}.$$

If $v_1, v_2, \dots, v_{2(n-1)} \in D_{n-1} \setminus D_{n-1} (\sim e)$, then

$$G\left(F\left(v_{1}, v_{2}, \dots, v_{2(n-1)}\right)\right) = G\left((1, 1), v_{1}, v_{2}, \dots, v_{f}, (1, -1), v_{f+1}, \dots, v_{2(n-1)}\right)$$

$$= v_{1}, v_{2}, \dots, v_{2(n-1)},$$

as required.

A6. For a set S of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1 \in S$, $s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?

Solution. Let $0 \in A = \{0, \ldots\}$. Then

$$\begin{array}{lll} 1 & = & 0+1 \Rightarrow 1 \in B = \{1,\ldots\}\,, \\ 2 & = & 0+2 \Rightarrow 2 \in B = \{1,2,\ldots\}\,, \\ 3 & = & 0+3 = 1+2 \Rightarrow 3 \in A = \{0,3,\ldots\}\,, \\ 4 & = & 0+4 = 1+3 \Rightarrow 4 \in B = \{1,2,4,\ldots\}\,, \\ 5 & = & 0+5 = 1+4 = 2+3 \Rightarrow 5 \in A = \{0,3,5,\ldots\}\,, \\ 6 & = & 0+6 = 1+5 = 2+4 \Rightarrow 6 \in A = \{0,3,5,6,\ldots\}\,, \\ 7 & = & 0+7 = 1+6 = 2+5 = 3+4 \Rightarrow 7 \in B = \{1,2,4,7,\ldots\}\,. \end{array}$$

Note that thus far A consists of the whole numbers (\mathbb{Z}_+) with an *even* number of ones in their base 2 representation, whereas B consists of the whole numbers with an *odd* number of ones in their base 2 representation. Let's prove the conjecture. Let $n \geq 0$ and suppose

$$n = a_1 + a_2$$
 where $a_1, a_2 \in A, a_1 \neq a_2$.

Now the binary reps of a_1 and a_2 differ in some first digit, say from the right. Change that digit in each of a_1 and a_2 , to obtain b_1 and $b_2 \in B$. Note that $b_1 + b_2 = a_1 + a_2 = n$. Thus, we have a bijection

$$\{(a_1, a_2) : a_1 + a_2 = n \text{ with } a_1, a_2 \in A, \ a_1 \neq a_2\} \longleftrightarrow \{(b_1, b_2) : b_1 + b_2 = n \text{ with } b_1, b_2 \in B, \ b_1 \neq b_2\},$$

showing that $r_A(n) = r_B(n)$ for all $n \in \mathbb{Z}_+$.

B1. Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

Solution. No. Choosing $y = 0, y = \pm 1$, we get

$$1 = c(0)A(x) + d(0)B(x)$$

$$1 + x + x^{2} = c(1)A(x) + d(1)B(x)$$

$$1 - x + x^{2} = c(-1)A(x) + d(-1)A(x),$$

where A(x) and B(x) are the truncations of a(x) and b(x) to polynomials of degree less than 3; note that any higher degree terms in a(x) and b(x) must cancel on the right sides. Since $\{1, 1+x+x^2, 1-x+x^2\}$ is a basis of the vector space P_2 of polynomials in x of degree less than 3 and each of $1, 1+x+x^2, 1-x+x^2$ is a linear combination of A(x) and B(x), $\{A(x), B(x)\}$ spans P_2 , but dim $P_2 = 3$, and so a spanning set of P_2 must have at least 3 elements.

B2. Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots \frac{1}{n}$, form a new sequence of n-1 entries, $\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of n-2 entries and continue until the final sequence produced consists of a single number x_n . Show that $x_n < \frac{2}{n}$.

Solution. For an infinite sequence a_0, a_1, \ldots , the sequence of first averages is

$$\frac{1}{2}(a_0+a_1), \frac{1}{2}(a_1+a_2), \frac{1}{2}(a_2+a_3), \ldots,$$

the sequence of second averages is

$$\frac{1}{2} \left(\frac{1}{2} \left(a_0 + a_1 \right) + \frac{1}{2} \left(a_1 + a_2 \right) \right), \frac{1}{2} \left(\frac{1}{2} \left(a_1 + a_2 \right), \frac{1}{2} \left(a_2 + a_3 \right) \right), \dots
= \frac{1}{2^2} \left(a_0 + 2a_1 + a_2 \right), \frac{1}{2^2} \left(a_1 + 2a_2 + a_3 \right), \dots,$$

the sequence of third averages is

$$\frac{1}{2^3} \left(\left(a_0 + 2a_1 + a_2 \right) + \left(a_1 + 2a_2 + a_3 \right) \right), \dots$$

$$= \frac{1}{2^3} \left(a_0 + 3a_1 + 3a_2 + a_3 \right), \dots$$

By induction, the first term of the sequence of k-th averages is

$$\frac{1}{2^k} \left(\sum_{i=0}^k \frac{k!}{i! (k-i)!} a_i \right).$$

The value that we seek to estimate, namely the first term of the sequence of (n-1)-th averages of $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots$, is then

$$\frac{1}{2^{n-1}} \left(\sum_{i=0}^{n-1} \frac{(n-1)!}{i! (n-1-i)!} \frac{1}{1+i} \right) = \frac{1}{n2^{n-1}} \left(\sum_{i=0}^{n-1} \frac{n!}{(i+1)! (n-(i+1))!} \right)$$
$$= \frac{1}{n2^{n-1}} (2^n - 1) \le \frac{2}{n}.$$

B3. Show that for each positive integer n,

$$n! = \prod_{i=1}^{n} \operatorname{lcm}\left(1, 2, \dots, \left\lfloor \frac{n}{i} \right\rfloor\right)$$

(Here lcm denotes the least common multiple, and |x| denotes the greatest integer $\leq x$.)

Solution. We use induction, first noting that the case n=1 holds. We need to show that

$$n = \frac{\prod_{i=1}^{n} \operatorname{lcm}\left(1, 2, \dots, \left\lfloor \frac{n}{i} \right\rfloor\right)}{\prod_{i=1}^{n-1} \operatorname{lcm}\left(1, 2, \dots, \left\lfloor \frac{n-1}{i} \right\rfloor\right)}.$$

Since $\operatorname{lcm}\left(1,2,\ldots,\left\lfloor\frac{n}{i}\right\rfloor\right)=1$ when i=n, we may replace $\prod_{i=1}^n$ by $\prod_{i=1}^{n-1}$ in the numerator, whence we are to show that

$$n = \prod_{i=1}^{n-1} \left(\frac{\operatorname{lcm}\left(1, 2, \dots, \left\lfloor \frac{n}{i} \right\rfloor\right)}{\operatorname{lcm}\left(1, 2, \dots, \left\lfloor \frac{n-1}{i} \right\rfloor\right)} \right) \tag{2}$$

Note that either $\left\lfloor \frac{n}{i} \right\rfloor = \left\lfloor \frac{n-1}{i} \right\rfloor$ or $\left\lfloor \frac{n}{i} \right\rfloor = \left\lfloor \frac{n-1}{i} \right\rfloor + 1$. If $\left\lfloor \frac{n}{i} \right\rfloor = \left\lfloor \frac{n-1}{i} \right\rfloor$, the *i*-th factor of 2 is 1. If $\left\lfloor \frac{n}{i} \right\rfloor = \left\lfloor \frac{n-1}{i} \right\rfloor + 1$, then it must be that $\frac{n}{i}$ is an integer. We will use the fact that the lcm of a set of positive integers is the product of their maximal prime power factors. If $\frac{n}{i}$ is not the power of a prime, then all of the exponents of the prime power factors of the numbers $1, 2, \ldots, \left\lfloor \frac{n}{i} \right\rfloor$ are no greater than those of $1, 2, \ldots, \left\lfloor \frac{n-1}{i} \right\rfloor$ in which case the *i*-th factor of 2 is 1. If $\frac{n}{i}$ is p^m for some prime p, then the *i*-th factor of 2 is p, since p^{m-1} is among the numbers $1, 2, \ldots, \left\lfloor \frac{n-1}{i} \right\rfloor$, but p^m (and its multiples) is not. Thus, the non-unit factors of the right side of 2 are just the prime factors of n each repeated according to multiplicity. Hence the right side of 2 is the prime factorization of n which of course equals n.

B4. Let $f(z) = az^4 + bz^3 + cz^2 + dz + e = a(z - r_1)(z - r_2)(z - r_3)(z - r_4)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number, and if $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.

Solution. Note that

$$(z - r_1) (z - r_2) (z - r_3) (z - r_4)$$

$$= z^4 - (r_1 + r_2 + r_4 + r_3) z^3 + (r_1 r_2 + r_3 r_4 + r_2 r_4 + r_2 r_3 + r_1 r_4 + r_1 r_3) z^2 - (r_2 r_3 r_4 + r_1 r_3 r_4 + r_1 r_2 r_4 + r_1 r_2 r_3) z + r_1 r_2 r_3 r_4$$

Thus,

$$(r_1 + r_2) + (r_3 + r_4) = r_1 + r_2 + r_4 + r_3 = -b/a$$

$$(r_1 + r_2) (r_3 + r_4) + r_1 r_2 + r_3 r_4 = r_1 r_2 + r_3 r_4 + r_2 r_4 + r_2 r_3 + r_1 r_4 + r_1 r_3 = c/a$$

$$r_3 r_4 (r_2 + r_1) + r_1 r_2 (r_4 + r_3) = r_2 r_3 r_4 + r_1 r_3 r_4 + r_1 r_2 r_4 + r_1 r_2 r_3 = -d/a$$

$$(r_1 r_2) (r_3 r_4) = r_1 r_2 r_3 r_4 = e/a$$

and the left sides are then rational. With $s = r_1 + r_2$, $t = r_3 + r_4$, $u = r_1r_2$ and $v = r_3r_4$, these become

$$s+t = -b/a$$

$$st+u+v = c/a$$

$$vs+ut = -d/a$$

$$uv = e/a.$$

We conclude that t is rational, and u + v = c/a - st is rational. Then s(u + v) is rational and

$$u(t - s) = vs + ut - s(u + v) = -d/a - s(u + v)$$

is then rational. If $t \neq s$, then

$$r_1 r_2 = u = \frac{-d/a - s(u+v)}{t-s}$$

is rational as required.

B5. Let A, B and C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distances from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.

Solution. Choose coordinates in the complex plane so that $A=1, B=e^{2\pi i/3}, C=e^{4\pi i/3}$. If $\beta=e^{2\pi i/3}$, then $C=\beta^2$ and $A=\beta^3=1$. Let P=z. Then

$$a = |z - 1|, b = |z - \beta|, \text{ and } c = |z - \beta^2|.$$

To show that a, b, c are side lengths of a triangle we need unit complex numbers $\alpha_1, \alpha_2, \alpha_3$ so that

$$\alpha_1(z-1) + \alpha_2(z-\beta) + \alpha_3(z-\beta^2) = 0$$
, or equivalently,
 $(\alpha_1 + \alpha_2 + \alpha_3)z - (\alpha_1 + \alpha_2\beta + \alpha_3\beta^2) = 0$

We know that $1 + \beta + \beta^2 = 0$. For $(\alpha_1, \alpha_2, \alpha_3)$, it is then natural to try permutations of $(1, \beta, \beta^2)$. Indeed, $(\alpha_1, \alpha_2, \alpha_3) = (1, \beta, \beta^2)$ (or any other permutation) works fine, since

$$\alpha_1 + \alpha_2 \beta + \alpha_3 \beta^2 = 1 + \beta^2 + \beta^4 = 1 + \beta^2 + \beta = 0.$$

For a triangle with vector sides (a, b) and (c, d), the area Δ is given by

$$2 \cdot \Delta = \left| \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = |bc - ad| = \left| \operatorname{Im} \left((a + ib) (c - id) \right) \right|$$
$$= \left| \operatorname{Im} \left((a + ib) \overline{(c + id)} \right) \right| = \frac{1}{2} \left| \left((a + ib) \overline{(c + id)} - \overline{(a + ib)} (c + id) \right) \right|$$

The area of the triangle above with sides z - 1, $\beta(z - \beta)$ (and $\beta^2(z - \beta)$) is then (noting that $\bar{\beta} = \beta^2$)

$$\frac{1}{4} \left| \left((z-1) \overline{\beta (z-\beta)} - \overline{(z-1)} \beta (z-\beta) \right) \right|
= \frac{1}{4} \left| \left((z-1) \beta^2 (\overline{z} - \beta^2) - (\overline{z} - 1) \beta (z-\beta) \right) \right|
= \frac{1}{4} \left| \left((z-1) (\beta \overline{z} - 1) - (\overline{z} - 1) (z-\beta) \right) \right| |\beta|
= \frac{1}{4} \left| \left((\beta z \overline{z} - \beta \overline{z} - z + 1) - (z \overline{z} - z - \beta \overline{z} + \beta) \right) \right|
= \frac{1}{4} \left| \left((\beta |z|^2 + 1) - (|z|^2 + \beta) \right) \right|
= \frac{1}{4} \left| \left((\beta - 1) (|z|^2 - 1) \right) \right| = \frac{1}{4} \left| (\beta - 1) (1 - |z|^2) = \frac{\sqrt{3}}{4} (1 - |z|^2),$$

since

$$|(\beta - 1)|^2 = (\cos(2\pi/3) - 1)^2 + \sin^2(2\pi/3) = 2 - 2\cos(2\pi/3) = 3.$$

B6. Let f(x) be a continuous real-valued function defined on the interval [0,1]. Show that

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| dxdy \ge \int_{0}^{1} |f(x)| dx.$$

Solution. Let $A^+ = \{x \in [0,1]: f(x) > 0\}$ and let $A^- = \{x \in [0,1]: f(x) \le 0\}$. For $I^+ := \int_{A^+} f(x) \ dx$ and $I^- := -\int_{A^-} f(x) \ dx$, we have

$$\int_0^1 |f(x)| \ dx = \int_{A^+} f(x) \ dx - \int_{A^-} f(x) \ dx = I^+ + I^-.$$

Also,

$$\int \int_{A^{+} \times A^{+}} |f(x) + f(y)| dxdy
= \int \int_{A^{+} \times A^{+}} f(x) + f(y) dxdy = m(A^{+}) \int_{A^{+}} f(x) dx + m(A^{+}) \int_{A^{+}} f(y) dy
= 2m(A^{+}) I^{+}$$

and similarly

$$\int \int_{A^{-} \times A^{-}} \left| f\left(x\right) + f\left(y\right) \right| \ dxdy = 2m\left(A^{-}\right)I^{-}.$$

We have

$$\int \int_{A^{+} \times A^{-}} |f(x) + f(y)| dxdy$$

$$\geq \pm \left(\int \int_{A^{+} \times A^{-}} |f(x)| - |f(y)| dxdy \right)$$

$$= \pm \left(\int \int_{A^{+} \times A^{-}} f(x) dxdy - \int \int_{A^{+} \times A^{-}} |f(y)| dxdy \right)$$

$$= \pm \left(m \left(A^{-} \right) I^{+} - m \left(A^{+} \right) I^{-} \right)$$

Similarly,

$$\int \int_{A^{-} \times A^{+}} |f(x) + f(y)| dxdy$$

$$\geq \pm \left(m \left(A^{+} \right) I^{-} - m \left(A^{-} \right) I^{+} \right)$$

Thus,

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| dxdy$$

$$= \int \int_{(A^{+} \times A^{+}) \cup (A^{-} \times A^{-}) \cup (A^{+} \times A^{-}) \cup (A^{-} \times A^{+})} |f(x) + f(y)| dxdy$$

$$\geq 2m (A^{+}) I^{+} + 2m (A^{-}) I^{-} \pm (m (A^{-}) I^{+} - m (A^{+}) I^{-}) \pm' (m (A^{+}) I^{-} - m (A^{-}) I^{+})$$

$$= 2m (A^{+}) I^{+} + 2m (A^{-}) I^{-} \pm m (A^{-}) I^{+} \mp m (A^{+}) I^{-} \pm' m (A^{+}) I^{-} \mp' m (A^{-}) I^{+}$$

$$= (2m (A^{+}) \pm m (A^{-}) \mp' m (A^{-})) I^{+} + (2m (A^{-}) \mp m (A^{+}) \pm' m (A^{+})) I^{-}.$$

There are four possible choices of the signs \pm and \pm' , yielding (where we have used $m(A^-) + m(A^+) = 1$)

$$\begin{array}{lll} (+,+') & : & 2m\left(A^{+}\right)I^{+} + 2m\left(A^{-}\right)I^{-} \\ (+,-') & : & 2I^{+} + 2\left(m\left(A^{-}\right) - m\left(A^{+}\right)\right)I^{-} \\ (-,+') & : & 2\left(m\left(A^{+}\right) - m\left(A^{-}\right)\right)I^{+} + 2I^{-} \\ (-,-') & : & 2m\left(A^{+}\right)I^{+} + 2m\left(A^{-}\right)I^{-} \end{array}$$

Note that (+,+') and (-,-') yield the same result. Thus,

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| \, dx dy \ge \max \left\{ \begin{array}{l} 2m(A^{+}) I^{+} + 2m(A^{-}) I^{-}, \\ 2I^{+} + 2(m(A^{-}) - m(A^{+})) I^{-}, \\ 2(m(A^{+}) - m(A^{-})) I^{+} + 2I^{-} \end{array} \right\}$$

To show that

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| \, dx dy \geq \int_{0}^{1} |f(x)| \, dx, \text{ or equivalently}$$

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| \, dx dy - \left(I^{+} + I^{-}\right) \geq 0,$$

there are four possible cases of inequalities to consider for the pairs (I^{+}, I^{-}) and $(m(A^{+}), m(A^{-}))$.

Case 1: If $I^{+} \geq I^{-}$ and $m(A^{+}) \geq m(A^{-})$, then

$$2m(A^{+})I^{+} + 2m(A^{-})I^{-} - (I^{+} + I^{-})$$

$$= (2m(A^{+}) - 1)I^{+} + (2m(A^{-}) - 1)I^{-}$$

$$\geq (2m(A^{+}) - 1)I^{+} + (2m(A^{-}) - 1)I^{+}$$

$$\geq ((2(m(A^{+}) + m(A^{-})) - 2))I^{+} = 0.$$

Case 2: If $I^{+} \leq I^{-}$ and $m(A^{+}) \leq m(A^{-})$, then

$$2m(A^{+})I^{+} + 2m(A^{-})I^{-} - (I^{+} + I^{-})$$

$$= (2m(A^{+}) - 1)I^{+} + (2m(A^{-}) - 1)I^{-}$$

$$\geq (2m(A^{+}) - 1)I^{-} + (2m(A^{-}) - 1)I^{+}$$

$$\geq ((2(m(A^{+}) + m(A^{-})) - 2))I^{-} = 0.$$

Case 3: If $I^{+} \geq I^{-}$ and $m(A^{+}) \leq m(A^{-})$, then $m(A^{+}) \leq \frac{1}{2}$ and $m(A^{-}) \geq \frac{1}{2}$, and so

$$2I^{+} + 2\left(m\left(A^{-}\right) - m\left(A^{+}\right)\right)I^{-} - \left(I^{+} + I^{-}\right)$$

$$= I^{+} + 2\left(m\left(A^{-}\right) - m\left(A^{+}\right) - \frac{1}{2}\right)I^{-}$$

$$\geq I^{+} - 2m\left(A^{+}\right)I^{-} \geq I^{+} - I^{-} \geq 0.$$

Case 4: If $I^{+} \leq I^{-}$ and $m(A^{+}) \geq m(A^{-})$, then $m(A^{+}) \geq \frac{1}{2}$ and $m(A^{-}) \leq \frac{1}{2}$, and so

$$2 (m (A^{+}) - m (A^{-})) I^{+} + 2I^{-} - (I^{+} + I^{-})$$

$$= 2 (m (A^{+}) - m (A^{-}) - \frac{1}{2}) I^{+} + I^{-}$$

$$\geq -2m (A^{-}) I^{+} + I^{-} \geq -I^{+} + I^{-} \geq 0.$$