Putnam 2003

A1l. Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,
n:a1+a2+...+ak;
with k an arbitrary positive integer and a; < ay < --- < ay + 17 For example, with n = 4,
there are four ways: 4,2+2, 1+1+2, 1+1+1+41.

Solution. We use induction to prove that the number N (n) of ways is n. For n = 1 this is
clear. By gathering the equal terms (either a; or a; + 1), each equation n = a; +as+. .. +ay
for given n and k can be uniquely rewritten in the form

E(n,k,a,r):n=ra+ (k—r)(a+1)

for some r € {1,...,k} which depends uniquely on k,a,and n (indeed, r = k (a + 1) — n).
Let
E, = {E (n,k,a,r): E(n,k,a,r) holds for some (k,a,r) € Zi} )

Note that

n = ra+k—r)(a+1l)=
n+l = (r—=1a+(k—-(r—-1)(a+1).

Thus, we have a map
F: gn — gn+1,

defined by
L E(n+1,k,a+1,k> r=1
F(E(n’k’a”))'_{E(n+1,k,a,r—1) 2<r<k<n.

Note that F' is clearly 1 — 1. It is not onto, since it misses the value
En+1n+1,1,n+1),
but this is the only value it misses, since

F(E (n,kya,s+1)) if s<k-—1

E(TL—FL]{,G,,S):{ F(E(n7k’a—1’kj)) 1f8:k‘§n

Hence, N (n) =n= N(n+1)=n+1.

A2. Let ay,as,...,a, and by, by, ..., b, be nonnegative real numbers. Show that

3=
3=

(aras -~ an) ™ + (biby---ba) ™ < ((ar + br) (ag + ba) - -~ (an + b)) .



Solution. Using the Lagrange multiplier method, for y; > 0 (i = 1,...n), the maximum
of the function yyys-- -y, with the constraint y; + y» + -+ + v, = 1, is achieved when
y1:y2:"':yn:%. Thus,

1
n

(niye )" < —ify1+2+---+yo=1landy; >0 (i=1,...n).

S|

For z; >0 (i=1,...n) and s = x1 + 22 + - - - + x,, taking y; = x;/s, we obtain

1
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<__..._N> < Zor
s s s n
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1
(T129 -+ 20)" < E(x1+xz+~~+$n), (1)

which says that the geometric mean is not greater than the arithmetic mean. We may assume
that a; + b; > 0 for all ¢, since the result is clearly true if a; + b; = 0 for some i. Apply (1)

for x; = aﬁ‘:bi to get
T
%2 < = " + a2 +...+L )
CL1—|—b1 a2~|—b2 an+bn n CL1—|—b1 a2+b2 an+bn
Now apply it for z; = —%— to get

a;+b;

3=

(61 by bn)<l( b b bn>
a1 +b; as+ by an + by “n\a+b as + by Gy + by, ’
Adding the above, we get
(o o m V(b bW,
a1+b1 ag'f‘bg (Zn+bn (11+b1 (Zg‘f‘bg an—l—bn n

Now multiply by ((al + bl) (CLQ + bg) st (an + bn)) .

3=

A3. Find the minimum value of
|sin + cos x + tan x + cot x + sec x + csc x|

for real numbers z.

Solution.
. . 2 2
sinx coszx sin“ x + cos“ 1
tanx +cotx = + — = - = -
cosr sinzx cosrsinw coszrsinx
1 1 sinx + cosx
secxr +cscx = —+ — = - .
cosxr sinx cosx sin x



Let u = sinz 4 cos z and note that —v/2 < u < v/2. Then

u? = sin?z+2cosxsinz +cos’r =1+ 2cosxsinx
. u?—1
= coszsinz = )
2
Thus,
) 2u
sinx +cosx +tanx +cotx +secxr +cscx = u + +
w2 -1 wu?2-1
2(u+1) 2(u+1) 2
= u+ T —u+(u+1)<u_1)—u+u_1.—f(u).
We have 5
ffluy=1-——5=0foru=1+v2
(u—1)
Now,

2
f(1i\/§):1i\/§+m:1i2\/§.

We check the endpoints:

B 2 2(V2+1)
f@@“ﬁ+ﬁ_f”@ﬂﬁ—uwﬂn

= \/§+2<\/§+1>:2+3\/§ and

_ 2(v2-1)
F(v2) - _\/—+_\/__ _\/5_(\/5+1)(\/§—1)

_ _\/5_2(\/5—1):2—3\/5.
We have
min{‘l—?ﬂ), 2}
- min{2\/§—1,3\/§—2:(2\/5—1)4—\/5—1}:2\/5—1%1.828.

Thus, the answer is 2v/2 — 1.
A4. Suppose that a,b,c, A, B, C are real numbers, a # 0 and A # 0, such that
|ax2+bx+c’ < ’Ax2+Bx+C}
for all real numbers z. Show that

12 — dac| < | B? — 4AC| .



Solution. By replacing a, b, ¢ by —a, —b, —c, we may assume that a > 0, and similarly we
may assume that A > 0. Note that none of the above absolute values are affected by such
replacements. For large x

}aa:2+bx—|—c| < ‘Ax2+Bx+C} = |a+bx’1 —|—cx’2} < }A—l—Bm’l +Cx’2|
= a < A, taking the limit as ©z — oo.

Let D := B2 — 4AC and d := b? — 4ac.
There are three cases

(i) D>0, (i) D<0andd>0, (i) D<0andd<0

Case (i) D > 0: If D > 0, then Az? + Bz + C has real zeros ro > 11, and by the

quadratic formula, ro — r = @. Note that r; and 7y are also zeros of ax? + bx + ¢, since
laz? + bz + ¢| < |Az? + Bz + C|. Thus,
d D D
£:7‘2—T1:\/—/::>\/g:a[§\/5:>d§l)-
a

Case (ii) D <0 and d > 0. If D < 0, then 0 < Az? + Bz + C and
|ax2+bx+c‘ < ‘Ax2+Bx+C|:Ax2+Bx+C

Thus,+ (ax? + bz + ¢) < Az? + Br + C and so

(Ata)x* +(BE£b)z+ (C+e) >0
Hence

(B£b)?—4(A+a)(C+c)
(B2 — 4AC’) + (b2 — 4ac)

< 0,
< £ (—2Bb+4Ac+4aC).
Since one of £+ (—2Bb+ 4Ac + 4aC) is < 0, we have

D+d<0andso |d =d<|D|.

Case (17i) D < 0 and d < 0: In this case, 0 < az? + bz + ¢ < Az? + Bx + C and
consequently
min {an + bx + c} < min {A:C2 + Bx + C}

—b\’ —b dac—b  —d
min {ax +bx+c}—a(2a> +b(2a)+c " e

Now,




Thus,

ld _—d_=D_|D|
4a  4da — 4A  4A

a
d |d| < —=|D|<|D|.
and |d| < 5 |D| <D

A5. A Dyck n-path is a lattice path of n upsteps (1, 1) and n downsteps (1, —1) that starts
at the origin O and never dips below the z-axis. A return is a maximal sequence of contiguous
downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two
returns, of length 3 and 1 respectively.

O

Show that there is a one-to-one correspondence between the Dyck n-paths with no return
of even length and the Dyck (n — 1)-paths.

Solution. Let us denote a Dyck n-path by its sequence of steps vy, vs, ..., v, , where
v; = (1,1) or (1, —1). Denote the set of Dyck n-paths by D,,. We define a function

F:D, 1— D,(~e€):=D,\ {paths in D,, with a return of even length}
If vi,va,...,Vm-1) € Dyp_1 (~ ), then we set
F (U1>U27 ce av2(n71)) = (L 1)7 (1> _1)7UI>UQ> <oy U2(n—1) S Dn (N 6) .

If v1,v9,...,Umn-1) € Dyp_1\ Dn_1(~e) (ie., a Dyck (n — 1)-path with a return of even
length), let the final return of even length end with the step vy. Note that in the Dyck
n-path (1,1),v1,vs,...,vs, (1, =1),0f41,...,V2m—1) the original subpath vy, vy, ..., vy has

been translated up one unit and to the right one unit so that (1,1), vy, vs, ..., v, (1, —1) has
only one return, namely a final return of odd length, while (by choice of v¢) vyi1, ..., Vag—1)
has no return of even length. Thus, for vy, vs,. .., vam-1) € Dyp1 \ Dy1 (~ €), we set

F (Ul,’Ug, . ,112(”,1)) = (1,1),v1,00,...,05, (1, =1), 0541, ..., Vomn-1) € Dy (~e).

To show that F'is a bijection, we need to find an inverse, say G, for F. Let vy, vq, ..., 09, €
D, (~e) and let vy, vs,..., vy be the first Dyck subpath of vy, v, ..., vg,. Then set

G (’Ul, Vo, ... ,Ugn) =V2,...,V2-1,VU211y-..,V2p.
Here, if i = 1, vg,...,vy_1 is empty, and G (v1,vq,...,02,) = v3,...,U2,. Note that since
V1, V2, ..., Vop € Dy, (~ €), the first return (if any) of G (vy, va, . .., V2n) = V2, ..., Vi1, V2541, - - - , U2p,
ends in vg; 1, has even length, and is the last return of even length, in which case F' (G (vy, v, ..., v2,)) =
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V1, Vg, ..y Vo If U, ... V9 1,V011,...,V2, has no return of even length, then it must have
been that i = 2, in which case we also have F' (G (v1,vs, ..., v9,)) = (1,1),(1,—1),vs3,..., 09, =
v1,...,0,. For G (F (vl,vg, e ,vg(n,l))) , note that if vy, va, ..., Va(m—1) € Dp_1(~ €), then

G (F (U17U27 B 7'02(7171))) =G ((1> 1)7 (L _1)a V1, V2, ... 7U2(n71)) = U1,0V2,...,U2(n-1)-

If U1, V2, ..., VU2(n-1) c Dn—l \ Dn—l (N 6), then

G (F (Ulvv27 s 7U2(n—1))) = G ((17 1)77}171)27 -5 U, (17 _1)7vf+17 s 7U2(n—1))

= U1,V2,...,V3(n-1),
as required.

A6. For a set S of nonnegative integers, let rg(n) denote the number of ordered pairs
(s1,52) such that sy € S, s9 € S, 51 # $9, and s; + so = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that r4(n) = rg(n) for all n?

Solution. Let 0 € A= {0,...}. Then

= 0+1=1eB={1,...},

= 04+2=2eB={1,2,...},
0+3=1+2=3€A4=1{0,3,...},
0+4=1+3=4€B=1{1,2,4,...},

= 04+5=144=243=5€4=1{0,3,5,...},

= 04+46=1+5=24+4=6€ A=1{0,3,5,6,...},

— 047=14+6=24+5=3+4=>7eB={1,2,4,7,...}.

e B B O
|

Note that thus far A consists of the whole numbers (Z, ) with an even number of ones in
their base 2 representation, whereas B consists of the whole numbers with an odd number
of ones in their base 2 representation. Let’s prove the conjecture. Let n > 0 and suppose

n = a; + ay where ay,a5 € A, a; # as.

Now the binary reps of a; and as differ in some first digit, say from the right. Change that
digit in each of a; and as, to obtain b; and by € B. Note that b; + by = a; + as = n. Thus,
we have a bijection

{(a1,a2) : a1 + az = n with ay,as € A, a1 # as}
— {(bl,bg) : by + by = n with bl,bg S B, by 7é bg},

showing that r4(n) = rg(n) for all n € Z,.

B1. Do there exist polynomials a(x),b(z), c(y), d(y) such that
1+ 2y + 2%y? = a(x)c(y) + b(z)d(y)
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holds identically?

Solution. No. Choosing y = 0,y = +1, we get

1 = ¢(0)A(x) + d(0)B(x)
l+x+2° = c(1)A(x) +d(1)B(z)
l—z+2° = co(-1)A(x) +d(—1)A(x),
where A(z) and B(x) are the truncations of a(z) and b (z) to polynomials of degree less than
3; note that any higher degree terms in a(z) and b (x) must cancel on the right sides. Since
{1,142+ 2% 1— 2+ 2} is a basis of the vector space P, of polynomials in x of degree
less than 3 and each of 1,1+ = + 2,1 —  + 2? is a linear combination of A(z) and B(z),

{A(z), B(z)} spans P, but dim P, = 3, and so a spanning set of P, must have at least 3
elements.

B2. Let n be a positive integer. Starting with the sequence 1,1 1 form a new

5 3, o
sequence of n — 1 entries, 2,152, e %, by taking the averages of two consecutive entries

in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a
third sequence of n — 2 entries and continue until the final sequence produced consists of a
single number z,,. Show that x, < %

Solution. For an infinite sequence ag, aq, ..., the sequence of first averages is
3 (a0 +a1),5 (a1 +a2), 5 (a2 + as)
20’0 a172a1 (1/2,2 a2 as), ...,
the sequence of second averages is

%(%(ag+a1)+%(1+a2)) l(l(a1+a2) %(a2+a3)),
= 2% (ao + 2a1 + CZQ) % (a1 + 2@2 + a3)
the sequence of third averages is

%((ao—l—Qal+a2)—|—(a1+2a2+a3)),...
o5 (a0 + 3a1 + 3az + as) , .

By induction, the first term of the sequence of k-th averages is

1 (S K
2" (Z;z'!(k—i)!a") ‘

1=

The value that we seek to estimate, namely the first term of the sequence of (n — 1)-th
averages of 1,%,%, e %, 0,0,..., is then

—~ (-1 1 1 [ n!
(Z n—l—z'l—i—l) T ponl (Z(i—l—l)!(n—(i—l—l))!)




B3. Show that for each positive integer n,

(Here lem denotes the least common multiple, and |z| denotes the greatest integer < x.)

Solution. We use induction, first noting that the case n = 1 holds. We need to show that

_ H?:llcm(l,Q,...,L%J) |
[[5 lem (1,2,..., [2=L])

Since lem (1, 2,..., L%J) = 1 when i = n, we may replace [, by [] 71 in the numerator,
whence we are to show that
n lcm(1,2,...,Lﬂ, )
n = . 2
g(lcm(l,Z,...,L”TfJ) (2)

Note that either HJ = L"—lJ or L%J = L J + 1. If L J = L J the i-th factor of 2 is 1.
If HJ = L” 1J + 1, then it must be that ’,L is an integer. We Wlll use the fact that the lem
of a set of positive integers is the product of their maximal prime power factors. If % is not
the power of a prime, then all of the exponents of the prime power factors of the numbers
1,2,..., L%J are no greater than those of 1,2,..., L”T_IJ in which case the i-th factor of 2
is 1. If 2 is p™ for some prime p, then the i-th factor of 2 is p, since p™~! is among the
numbers 1,2, ..., L”T_lj , but p™ (and its multiples) is not. Thus, the non-unit factors of the
right side of 2 are just the prime factors of n each repeated according to multiplicity. Hence
the right side of 2 is the prime factorization of n which of course equals n.

B4. Let f(z) = az* + b2 + 22 +dz+e = a(z—r1)(z2—12) (2 —13) (2 —ry) where
a,b,c,d, e are integers, a # 0. Show that if r; +7 is a rational number, and if 7y +ry # r3+7ry,
then r17ry is a rational number.

Solution. Note that

(z—=r1)(z—12) (2 —713) (2 —14)
= 2t —(ry+ro+rya+13) 23 + (rire 4+ rary 4+ rory + rorz + vy +7173) 22

— (ror3ry 4 rirsry + rirery + r1r2r3) 2 + 1112137y

Thus,
(ri+ra)+(rs+m) = m+ratra+ry3=—b/a
(r1+1e) (r3+ry) 4 rirg +1r3ry = 1rirg +13ry +rory + rors + 1174 + 1173 = C/a
7“37“4(’/"2+7‘1)+7“1’I“2(’I“4+7"3) = 7“27“37“4+7‘1T3’I“4+’I“17“2’I“4+’l“17‘27“3:—d/a
(rir2) (rsra) = mTirersry =e€/a

8



and the left sides are then rational. With s = r{ + 79, t = r3 + 14, u = 1179 and v = r3ry,
these become

s+t = —b/a
st+u+v = c/a

vs+ut = —d/a
w = e/a.

We conclude that ¢ is rational, and u + v = ¢/a — st is rational. Then s (u + v) is rational
and
u(t—s)=vs+ut—s(u+v)=—-d/a—s(u+w)

is then rational. If ¢ # s, then

—d/a — s (u+v)
t—s

riry = U =

is rational as required.

B5. Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a,b,c be the distances
from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, ¢, and
that the area of this triangle depends only on the distance from P to O.

Solution. Choose coordinates in the complex plane so that A = 1, B = €2™/3, ' = ¢*™/3,

If B =e?/3, then C = % and A= 3> = 1. Let P = z. Then
a=|z—1], b=|z— |, and c = |z — 5.

To show that a, b, c are side lengths of a triangle we need unit complex numbers oy, as, ag
so that

a1 (z—1)+az(z—B)+as(z— %) = 0, or equivalently,
(o1 + g + a3) 2 — (041 + a3 + 04352) =0

We know that 1 + 8 + 3% = 0. For (a1, a9, a3), it is then natural to try permutations of
(l,ﬁﬁ?). Indeed, (aq, g, ag) = (1,6,52) (or any other permutation) works fine, since

o FagBtasP=1+3+p =1+ +8=0.

For a triangle with vector sides (a,b) and (¢, d), the area A is given by

2-A =

det ( .« >‘ — Jbe — ad| = |Im ((a + i) (c — id))|

= | ((@+ ) Cerid)| =4

((a v ib) (et id) — (@1 b) (c + z'd)))

9



The area of the triangle above with sides z — 1,3 (2 — ) (and % (z — 3)) is then (noting
that 5 = 3?)

H(E-0BE=9-G-18(:-5)|
= i!(z—152(2—52) (2=1)B(z=P))|
= H(E-1)@E-1) - (-1 (-
= H(Bz— B2 -2+ 1) = (s — 2 = fz + )|
= l(B1F +1) = (2 +5))\
= 1 [(B=D(1F =) =F1B-DI (1= [2") =F (1 - |2[),

(8 = 1)|* = (cos (21/3) — 1)* + sin? (27/3) = 2 — 2 cos (27/3) = 3.

B6. Let f(z) be a continuous real-valued function defined on the interval [0, 1]. Show

that
//|f )+ f |dxdy>/|f )| do.

Solutlon Let AT ={z € [0, 1] f( ) >0} andlet A~ ={x €[0,1]: f(x) <0}.For I :=
Jus f (@) deand I = — [, f(z) dz, we have

/0 If (2)] dx:Af(x) do— [ fl) de=T 41

/ / y)| dzdy
AJF><AJr

// ) dxdy =m (A") f(x)de+m (A+) f(y)dy
A+><A+ A+ A+
= 2m(AT)I"

//A fo y)| dedy =2m (A7) I

[ [ vorson s
ST
: <//M //M )t

= :I: I+—m(A+)

Also,

and similarly

We have

10



Similarly,

//A . |f(z y)| dedy

m (A*) I~ _m(A)z+)

Thus,

/l/llfx+f()| dedy

/] £ @)+ 7 )] drdy
AT XAT)U(A=XAT)U(ATXAT)U(A~ xAT)

IV

= 2mAN)EmA)Fm (A7) IT+2m (A7) Fm(AT) £ m (A7) .

2m (AT) I+ 2m (A7) I £ (m (A7) [T —m (AT) ")+ (m (AT) I~ —m (A7) IY)
2m (AT) I +2m (A7) I £m (A7) T Fm (AT) I ' m (AN I~ Fm (A7) It

There are four possible choices of the signs + and %/, yielding (where we have used m (A7) +

m (A7) =1)
+) : 2m(AT) I+ 2m (A7) I
+,=") ¢ 2l +2(m (A7) —m (AN)) I~
+) - 2(m(A+)—m(A_))I++2_T_
Y om (AN I 2m (AT) I
Note that (+,4’) and (—, —') yield the same result. Thus,

1 1 2m (AT) It +2m (A7) I,
/ / f(x)—l—f(y)dxdy>max{ 2IT 4+ 2(m (A7) —m(AM)) I, }
0 Jo 2(m(AT) —m (A7) It +21

To show that

/ 1 / 1If(:v)JrJ"“(y)|dxdy > / 1| f(z)| dz, or equivalently
0 0 0

1 1
| [1r@eswldsay - +1) = o

there are four possible cases of inequalities to consider for the pairs (I, I7) and (m (A"),m

Case 1: If IT > [~ and m (A*) > m (A7), then

2m (AN) It +2m (A7) I — (IT +17)
= 2m(AT) - I+ (@2m(A7)-1)I"
> (2m(AT)-1)I"+ (2m (A7) -1)I"
> ((2(m (A7) +m (A7) =2) 1" =0,

11
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Case 2: If [T <]~ and m(AT) <m (A7), then

Case 3: If I" > 1 and m (A"

Case 4: If [T < [~

(AVARI

2m (AN I +2m (A7) I~ — (IT+17)
2m(AT) -1 I+ (2m (A7) 1)1
2m (AT =) +(@2m (A7) -1)I"
((2(m (A7) +m (A7) =2)) " =0.
(

) <m (A7), then m(AT) < 2 and m (A~) >

(AVARAVAI

% %, and so
20V +2(m (A7) —m (AY)) I — (IT+1")
+2m(A7)—m(AT)—3) 1

It —2m(AY) - >I"—1 >0.

and m (AT) > m (A7), then m (A") > 1 and m(A~) <1, and so

AV

2(m(AY) —m (A7) I +2I" — (I +17)
2 (m (A" m( ) ) I+
—2m (A7) I +1 —IT+1 >0.

\_/\—/
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