INTRODUCTORY PROBLEMS

1. Every living person has shaken hands with a certain number
of other persons. Prove that a count of the number of people who
have shaken hands an odd number of times must yield an even
number.

2. In chess, is it possible for the knight to go (by allowable moves)
from the lower left-hand corner of the board to the upper right-hand
corner and in the process to light exactly once on each square?’

Figure 1

3. (%) N rings having different outer diameters are slipped onto
an upright peg, the largest ring on the bottom. to form a pyramid
(Figure 1). We wish to transfer all the rings, one at a time, to a
b
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second peg, but we have a third (auxiliary) peg at our disposal.
During the transfers it is not permitted to place a larger ring on a
smaller one. What is the smallest number, %, of moves necessary
to complete the transfer to peg number 2?1

(b)* A brain-teaser called the game of Chinese Rings is con-
structed as follows: # rings of the same size are each connected to
a plate by a series of wires, all of which are the same length (see
Figure 2). A thin, doubled rod is slipped through the rings in such
a way that all the wires are inside the U-opening of the rod. (The
wires are free to slide in holes in the plate, as shown.) The problem
consists of removing all the rings from the rod. What is the least
number of moves necessary to do this?

Figure 2

4. (a) We are given 80 coins of the same denomination; we know
that one of them is counterfeit and that it 1s lighter than the others.

Locate the counterfeit coin by using four weighings on a pan balance.

(b) It is known that there i1s one counterfeit coin in a collec-
tion of »# similar coins. What is the least number of weight trials
necessary to identify the counterfeit?

5. Twenty metal blocks are of the same size and external ap-
pearance;, some are aluminum, and the rest are duraluminum, which
1s heavier. Using at most eleven weighings on a pan balance, how
can we determine how many blocks are aluminum?

6. (a)* Among twelve similar coins there 1s one counterfeit. [t
1s not known whether the counterfeit coin is lighter or heavier than
a genuine one (all genuine coins weigh the same). Using three
weighings on a pan balance, how can the counterfeit be identified
and 1n the process determined to be lighter or heavier than a genuine

coin’

t This 1s sometimes referred to as the Tower of Hanot problem [Edzitor].
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| (b)** There is one counterfeit coin among 1000 similar coins.
It is not known whether the counterfeit coin is lighter or heavier
than a genuine one. What is the least number of weighings, on a

pan balance, necessary to locate the counterfeit and to determine
whether it is light or heavy?

Remark: Using the conditions of problem (a) it is possible to locate, in three
weighings, one counterfeit out of thirteen coins, but we cannnot determine
whether it is light or heavy. For fourteen coins, four weighings are necessary.

It would be interesting to determine the least number of weighings necessary
to locate one counterfeit out of 1000 coins if we are relieved of the necessity
of determining whether it is light or heavy.

7. (a) A traveler having no money, but owning a gold chain
having seven links, is accepted at an inn on the condition that he
pay one link per day for his stay. If the traveler is to pay daily,
but may take change in the form of links previously paid, and if he
remains seven days, what is the least number of links that must be
cut out of the chain? (Nofe: A link may be taken from any part
of the chain.)

(b) A chain consists of 2000 links. What is the least number
of links that must be disengaged from the chain in order that any

specified number of links, from 1 to 2000, may be gathered together
from the parts of the chain thus formed?

8. Two-hundred students are positioned in 10 rows, each containing
20 students. From each of the 20 columns thus formed the shortest
student is selected, and the tallest of these 20 (short) students is
tagged A. These students now return to their initial places. Next
the tallest student in each row is selected, and from these 10 (tall)

gtudents the shortest is tagged B. Which of the two tagged students
1s the taller (if they are different people)?

9. Given thirteen gears, each weighing an integral number of
grams. It 1s known that any twelve of them may be placed on a
pan balance, six on each pan, in such a way that the scale will be
1in equilibrium. Prove that all the gears must be of equal weight.

10. Refer to the following number triangle.

h Do =
~] O~

1
2 1
6 3 1
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Each number is the sum of three numbers of the previous row: the
number immediately above it and the numbers immediately to the
right and left of that one. If no number appears in one or more of
these locations, the number zero i1s used. Prove that every row,
beginning with the third row, contains at least one even number.

11. Twelve squares are laid out in-a circular pattern [as on the
circumference of a circle]. Four different colored chips, red, yellow,
green, blue, are placed on four consecutive squares. A chip may be
moved 1n either a clockwise or a counterclockwise direction over four

other squares to a fifth square, provided that the fifth square is not
occupied by a chip. After a certain number of moves the same four

squares will again be occupied by chips. How many permutations
(rearrangements) of the four chips are possible as a result of this

process?

12. An island is inhabited by five men and a pet monkey. One
afternoon the men gathered a large pile of coconuts, which they
proposed to divide equally among themselves the next morning.
During the night one of the men awoke and decided to help himself
to his share of the nuts. In dividing them into five equal parts he
found that there was one nut left over. This one he gave to the
monkey. He then hid his one-fifth share, leaving the rest in a single
pile. Later during the night another man awoke with the same idea
in mind. He went to the pile, divided it into five equal parts, and
found that there was one coconut left over. This he gave to the
monkey, and then he hid his one-fifth share, restoring the rest to
one pile. During the same night each of the other three men arose,
one at a time, and in ignorance of what had happened previously,
went to the pile, and followed the same procedure. Each time one
coconut was left over, and it was given to the monkey. The next
morning all five men went to the diminished nut pile and divided 1t
into five equal parts, finding that one nut remained over. What is
the least number of coconuts the original pile could have contained?

13. Two brothers sold a herd of sheep which they owned. For
each sheep they received as many rubles as the number of sheep
originally in the herd. The money was then divided in the follow-
ing manner. First, the older brother took ten rubles, then the
younger brother took ten rubles, after which the older brother took
another ten rubles, and so on. At the end of the division the younger
brother, whose turn it was, found that there were fewer than ten
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rubles left, so he took what remained. To make the division just,

the older brother gave the younger his penknife. How much was
the penknife worth?

14.* (a) On which of the two days of the week, Saturday or Sun-
day, does New Year’s Day fall more often?

(b) On which day of the week does the thirtieth of the
month most often fall?

2

ALTERATIONS OF DIGITS IN INTEGERS

15. Which integers have the following property? If the final digit
1s deleted, the integer is divisible by the new number.

16. (a) Find all integers with initial digit 6 which have the fol-
lowing property, that if this initial digit is deleted, the resulting
number 1s reduced to 3 its original value.

(b) Prove that there does not exist any integer with the pro-
perty that if its first digit is deleted, the resulting number is 3% the

original number.

17.* An integer 1s reduced to } its value when a certain one of
its digits is deleted, and the resulting number is again divisible by 9.
(a) Prove that division of this resulting integer by 9 results

In deleting an additional digit.
(b) Find all integers satisfying the conditions of the problem.

18. (a) Find all integers having the property that when the third
digit is deleted the resulting number divides the original one.
(b)* Find all integers with the property that when the second

digit is deleted the resulting number divides the original one.

19. (a) Find the smallest integer whose first digit is 1 and which
11
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has the property that if this digit is transferred to the end of the
number the number is tripled. Find all such integers.

(b) With what digits is it possible to begin a (nonzero) integer

such that the integer will be tripled upon the transfer of the initial
digit to the end? Find all such integers.

20. Prove that there does not exist a natural number which, upon
transfer of its initial digit to the end, is increased five, six, or eight

times.

21. Prove that there does not exist an integer which is doubled
when the initial digit is transferred to the end.

22. (a) Prove that there does not exist an integer which becomes
either seven times or nine times as great when the initial digit is

transferred to the end.
(b) Prove that no integer becomes four times as great when its

initial digit i1s transferred to the end.

23. Find the least integer whose first digit is seven and which is
reduced to 7 its original value when its first digit is tranferred to
the end. Find all such integers.

24. (a) We say one integer is the “inversion” of another if it
consists of the same digits written in reverse order. Prove that there
ex1sts no natural number whose inversion is two, three, five, seven,

or eight times that number.
(b) Find all integers whose inversions are four or nine times

the original number.

- 25. (a) Find a six-digit number which is multiplied by a factor
of 6 1f the final three digits are removed and placed (without changing

their order) at the beginning.
(b) Prove that there cannot exist an eight-digit number which

1s Increased by a factor of 6 when the final four digits are removed
and placed (without changing their order) at the beginning.

26. Find a six-digit number whose product by 2, 3, 4,5, or 6 con-
tains the same digits as did the original number (in different order,
of course).

THE DIVISIBILITY OF INTEGERS

N o i e il

27. Prove that for every integer n:
(a) n® — n 1s divisible by 3:
(b) #® — n i1s divisible by 5;
(¢c) wn" — n 1s divisible by 7;
(d) n''* — n 1s divisible by 11;
(e) n'* —n 1s divisible by 13.

Note: Observe that n® — n is not necessarily divisible by 9 (for example,
2% — 2 = 510 is not divisible by 9).
Problems (a-e) are special cases of a general theorem; see problem 240,

28. Prove the following:
(a) 3°% — 28" 1s divisible by 35, for every positive integer #;
(b) n® — 5n® + 4n 1s divisible by 120, for every integer x;
(©)* for all integers m and n, mn(m® — »®°) i1s divisible by the
number 56,786,730.

29. Prove that »? 4+ 3n + 5 1s never divisible by 121 for any posi-

' For a discussion of the general concepts involved in the solution of the
majority of the problems in this section, see the book by B. B. Dynkin and V.
A. Uspensky, Mathematical Conversations, Issue 6, Section 2, ‘‘Problems in
Number Theory,”” Library of the USSR Mathematical Society.

13
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tive integer #.
30. Prove that the expression
m® + 3m*n — Smin® — 15m*n® + 4dmnt + 12n°

cannot have the value 33, regardless of what integers are substituted
for m and n.

31. What remainders can result when the 100th power of an integer
1s divided by 1257

32. Prove that if an integer # is relatively prime to 10, the 101st
power of #n ends with the same three digits as does #. (For example,
1233'° ends with the digits 233, and 37" ends with the digits 037.)

33. Find a three-digit number all of whose integral powers end
with the same three digits as does the original number.

34. Let N be an even number not divisible by 10. What digit
will be in the tens place of the number N2°, and what digit will be
in the hundreds place of N200?

39. Prove that the sum
1# 4+ 28 + 3+ -+ - 4 5t
where # 1s an arbitrary integer and k. is odd, is divisible by 1 + 2 +
3+ -+ 4+ n.

36. Give a criterion that a number be divisible by 11.

37. The number 123456789(10)(11)(12)(13)(14) is written in the base
15—that 1s, the number is equal (in the base 10) to

14 4+ (13)-15 + (12)-15% + (11)-15% 4- -+« 4 2.15!2 4- 1513
What is the remainder upon dividing the number by 7?

38. Prove that 1, 3, and 9 are the only numbers K having the
property that if K divides a number &, it also divides every number
obtained by permuting the digits of N. (For K =1, the condition
given 1s trivial; for K = 3, or 9, the condition follows from the well-
known fact that a number is divisible by 3, or 9, if and only if the
sum of its digits is divisible by 3, or 9.)

39. Prove that 27,195®° — 10,8878 + 10,1528 is exactly divisible by
26,460,

40. Prove that 11'° — 1 is divisible by 100.

ip l'a'-..'-r'
****
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41. Prove that 2222%%% + 5555%222 ig divisible by 7.

42. Prove thas a number consisting of 3" identical digits is di-
visible by 3". (For example, the number 222 is divisible by 3, the
number 777,777,777, is divisible by 9, and so on).

43. Find the remainder upon dividing the following number by 7:
1010 + 10199 4 ... 4 101!

44. (a) Find the final digit of the numbers 9¢® and 2¢% .
(b) Find the final two digits of the numbers 2°° and 39°°.
(c)* Find the final two digits of the number 14144

45. (a) What is the final digit of the number

G 7)) 0T

(where the 7th power is taken 1000 times)? What are the final two
digits?
(b) What is the final digit of the number

(7))

7 ,
which contains 1001 sevens, as does the number given in problem
(a), but with the exponents used differently? What are the final two

digits of this number?

46. Determine the final five digits of the number

(A7)

N=29 :
which contains 1001 nines, positioned as shown.
47.* Find the last 1000 digits of the number
N=1+ 50+ 502 + 50% + .-- 4 50%%

48. How many zeros terminate the number which is the product
of all the integers from 1 to 100, inclusive?

Here we may use the following well-known notation:
| 1-2-3-4..-(n — 1) n =n!
(called factorial n). The problem can then be stated more succinctly: How
many zeros are at the end of 100!?

49. (a) Prove that the product of # consecutive integers is divisi-
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ble by n!.
(b) Prove that if a + 6+ --- + & £ n, then the fraction

7!
albt---k!

is an integer.

(c) Prove that (#!)! 1s divisible by n!@-b:

(d)* Prove that the product of the # integers of an arithmetic
progression of n terms, where the common difference 1s relatively
prime to n!, is divisible by nl.

Note: Problem 49 (d) is a generalization of 49 (a).

50. Is the number, CX5, of combinations of 1000 elements, taken

500 at a time, divisible by 77!

51. (a) Find all numbers n» between 1 and 100 having the property _

that (z — 1)! 1s not divisible by #.

(b) Find ali numbers # between 1 and 100 having the property

that (# — 1)! 1s not divisible by #?2.

52.* Find all integers = which are divisible by all integers not ; .

exceeding 1/ # .

53. (a) Prove that the sum of the squares of five consecutive ..

integers cannot be the square of any integer.

(b) Prove that the sum of even powers of three consecutive jf |

numbers cannot be an even power of any integer.

(c) Prove that the sum of the same even power of nine con-
secutive integers, the first of which exceeds 1, cannot be any integral 3§

power of any integer.

54, (a) Let A and B be two distinct seven-digit numbers, each
of which contains all the digits from 1 to 7. Prove that A is not |

divisible by B.

(b) Using all the digits from 1 to 9, make up three, three- _?

digit numbers which are related in the ratio 1:2: 3.

55. Which integers can have squares that end with four identical §

digits?

56. Prove that if two adjacent sides of a rectangle and 1ts diagonal
can be expressed in integers, then the area of the rectangle 1s divi- :

t More ‘‘standard’’ notations for this are C(1000, 500) or C;3° or ('300). How-
ever, retention of the notation used in the original will cause no difficulty [ Editor].
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sible by 12.
57. Prove that 1f all the coefficients of the quadratic equation
ax*+bx+c=20

are odd integers, then the roots of the equation cannot be rational.

58. Prove that if the sum of the fractions
1 1 1
o+ 2

n n + 1
(where »n 1s a positive integer) is put in decimal form, it forms a
nonterminating decimal of deferred periodicity.!

59. Prove that the following numbers (where m and » are natural
numbers) cannot be integers:

1 1 1

a g —_— I .

(a) 24-3+ .

(b) =-—1'—_|_ 1 - 4+ e 1 .
n n + 1 n+m '’
1 1 1

C K=—+4 — 4 -+ 4

(©) 3 T35 7T on + 1

60.** (a) Prove that if p i1s a prime number greater than 3, then
the numerator of the (reduced) fraction

11 1
1 4 —_— vre - :
ot 3T 5 —1

1s divisible by p2. For example,

the numerator of which i1s 52
(b) Prove that if p is a prime number exceeding 3, then the
numerator of the (reduced) fraction which is the sum

1 1 1
1 —_— —_— P
tatmt o Y T

1s divisible by p. For example,

! Deferred periodicity means that the periodic portion is preceded by one or
more nonrepeating digits. The criterion is whether the denominator of the
(reduced) fraction has a common factor with 10 [Editor].
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has a numerator which is divisible by 5.
61. Prove that the expression

_a*+2a
a*+ 3a2+1"°

where ¢ 15 any positive integer, is a fraction in lowest terms.

62.* Leta,,a,, -+, a, be n distinct integers. Show that the product
ar —

ai
k—1 "~
63. Prove that all numbers made up as follows,

10001, 100010001, 1000100010001, ---
(three zeros between the ones), are composite numbers.

64. (a) Divide q!'*® — H'28 by

(@ + b)a* + b*Xa* + b*)(a® + b%)(a'® + b'$)a®* + b3%)(g%* + bSH) .

(b) Divide a@***' — bp***! by
(@ + b)a® + b¥(a* + b*)a® + b%)- - -(@®' + ') a? + b .

65. Prove that any two numbers of the following sequence are
relatively prime:

2+1,2°+1, 2¢+1, 28 +1, 2841, ..., 28" 4+1, ..,

Remark: The result obtained here proves that there is an infinite number
of primes (see also problems 159 and 253).

of all the fractions of form where n = k > [, is an integer.

66. Prove that if one of the numbers 2* — 1 and 2* + 1 is prime,
where # > 2, then the other number is composite.

67. (a) Prove that if p and 8 — 1 are both prime, then 8p + 1
1S composite.
(b) Prove that if p and 8p% + 1 are both prime, then 8p2 — 1
1S also prime.

68. Prove that the square of every prime number greater than 3
yields a remainder of 1 when divided by 12.

69. Prove that if three prime numbers, all greater than 3, form
an arithmetic progression, then the common difference of the progres-
ston is divisible by 6.

! i
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70.* (a) Ten primes, each less than 3000, form an arithmetic pro-

gression. Find these prime numbers.
(b) Prove that there do not exist eleven primes, all less than

20,000, which can form an arithmetic progression.

71. (a) Prove that, given five consecutive positive integers, it is

always possible to find one which 1s relatively prime to all the rest.

(b) Prove that among sixteen consecutive integers it is always
possible to find one which is relatively prime to all the rest.
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72. The integer A consists of 666 threes, and the integer B has |

bbb sixes. What digits appear in the product A-B?

713. What quotient and what remainder are obtained when the

number consisting of 1001 sevens is divided by the number 10017

74. Find the least square which commences with six twos.

75. Prove that if the number « is given by the decimal 0.999. ..,
where there are at least 100 nines, then 1 @ also has 100 nines at |

the beginning.

76. Adjoin to the digits 523... three more digits such that the f:;‘

resulting six-digit number is divisible by 7, 8, and 9.

77. Find a four-digit number which, on division by 131, yields

a remainder of 112, and on division by 132 yields a remainder of 98.

78. (a) Prove that the sum of all the »n-digit integers (# > 2) is

equal to
49499- . .95500- . -0 .

(n — 3) nines (n — 2) zeros

(For example, the sum of all three-digit numbers is equal to 494,550,
20
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and the sum of all six-digit numbers 1s 494,999,550,000.)
(b) Find the sum of all the four-digit even numbers which
can be written using 0,1, 2, 3,4, 5 (and where digits can be repeated

in a number).

79, How many of each of the ten digits are needed in order to
write out all the integers from 1 to 100,000,000 inclusive’

80. All the integers beginning with 1 are written successively
(that is, 1234567891011121314---). What digit occupies the 206,788th

position?

81. Does the number 0.1234567891011121314---, which 1s obtained
by writing successively all the integers, represent a rational number
(that is, is 1t a periodic decimal)’

82. We are given 27 weights which weigh, respectively, 12, 22, 32,
..., 27% units. Group these weights into three sets of equal weight.

83. A regular polygon i1s cut from a piece of cardboard. A pin
is put through the center to serve as an axis about which the polygon
can revolve. Find the least number of sides which the polygon can
have in order that revolution through an angle of 251 degrees will
put it into coincidence with its original position.

84. Using all the digits from 1 to 9, make up three, three-digit
numbers such that their product will be:
(a) least; (b) greatest.

85. The sum of a certaih number of consecutive positive integers
1s 1000. Find these integers.

86. (a) Prove that any number which i1s not a power of 2 can be
represented as the sum of at least two consecutive positive integers,
but that such a representation i1s impossible for powers of 2.

(b) Prove that any composite odd number can be represented
as a sum of some number of consecutive odd numbers, but that no
prime number can be represented in this form. Which even numbers
can be represented as the sum of consecutive odd numbers?

(¢} Prove that every power of a natural number z (# > 1) can
be represented as the sum of »n positive odd numbers.

87. Prove that the product of four consecutive integers is one less
than a perfect square.

88. Given 47 positive integers such that if any four distinct integers
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are taken, it is possible to form a proportion from them. Prove that
at least » of the given numbers are identical.

89.* Take four arbitrary natural numbers, A, B, C, and D. Prove
that if we use them to find the four numbers A,, B,, C,, and D,,
which are equal, respectively, to the differences between A and B,
B and C, C and D, D and A (taking the positive difference each
time), and then we repeat this process with A,, B,, C, and D, to ob-
tain four other numbers A, B,, C,, and D,, and so on, we eventually
must obtain four zeros.

For example, if we begin with the numbers 32, 1, 110, 7, we obtain the fol-
lowing pattern:

32, 1, 110, 7,
31, 109, 103, 25,
78, 6, 78, 6,
72, 72, 72, 72,

0, 0, 0, 0.

90.* (a) Rearrange the integers from 1 to 100 in such an order
that no eleven of them appear in the rearrangement (adjacently or

otherwise) in either ascending or descending order.

(b) Prove that no matter what rearrangement is made with
the integers from 1 to 101 it will always be possible to choose eleven |
of them which appear (adjacently or otherwise) in the arrangement

1n erther an ascending or a descending order.

91. (a) From the first 200 natural numbers, 101 of them are

arbitrarily chosen. Prove that among the numbers chosen there exists i;'z

a pair of numbers such that one of them is divisible by the other.

(b) From the first 200 natural numbers select a set of 100

numbers such that no one of them is divisible by any other.

(¢) Prove that if one of 100 numbers taken from the first 200
natural numbers is less than 16, then one of those 100 numbers is :

divisible by another.

92. (a) Prove that, given any 52 integers, there exist two of them ",,

whose sum, or else whose difference, is divisible by 100.
(b) Prove that out of any 100 integers, none divisible by 100,

it 18 always possible to find two or more integers whose sum is
divisible by 100.

93.* A chess master who has eleven weeks to prepare for a

tournament decides to play at least one game every day, but in order

not to tire himself he agrees to play not more than twelve games

ki
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during any one week. Prove that there exists a succession of days
during which the master will have played exactly twenty games.

g4. Let N be an arbitrary natural number. Prove that there ex-
:sts a multiple of N which contains only the digits 0 and 1. Moreover,
:f N is relatively prime to 10 (that 1s, is not divisible by 2 or 95),
then some multiple of N consists entirely of ones. (If /V 1s not
relatively prime to 10, then, of course, there exists no number of form
11 - -+ 1 which 1is divisible by N.)

95.* Given the sequence of numbers

0,1,1,2,3,5,8, 13,21, 34,55,89, ---,

where each number, beginning with the third, is the sum of the two
preceding numbers (this is called a Fibonacci sequence). Does there
exist, among the first 100,000,001 numbers of this sequence, a num-
ber terminating with four zeros?

96.* Let « be an arbitrary irrational number. Clearly, no matter
which integer »n is chosen, the fraction taken from the sequence

0 1 2 3

— 0 e— — ——
el
9 ]

#n "n ' n ' n
by no more than half of 1/xn.

.-, and which is closest to e, differs from «

Prove that there exist #’s such that

1
the fraction closest to « differs from a« by not more than 0.001(;—-).

97. Let m and » be two relatively prime natural numbers. Prove
that if the m + n — 2 {fractions

m+n 2im + n) 3(m + n) o (m — 1Y(m + n)
m 3 m ) m » » m 2

m + n 2(m + n) 3(m + n) (n — 1)(m + n)
n y n y n ’ ? ﬂ

are points on the real-number axis, then precisely one of these
fractions lies inside each one of the intervals (1, 2),(2,3),(3,4), ---,
(m +n—2,m+n—1) (see Figure 3, in which m =3, n = 4).

7 7 14 21
3 J 4 K] 4

Figure 3

98.* Let a, @, as, ---,a, be » natural numbers, each less than
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1000, but where the least common multiple of any two of the numbers
exceeds 1000. Prove that the sum of the reciprocals of these numbers

1s less than 2.

99.* The fraction g/p, where p # 5 is an odd prime, is expanded |
as a (periodic) decimal fraction. Prove that if the number of digits }
appearing 1in the period of the decimal is even, then the arithmetic
mean of these digits is 9/2 (that is, coincides with the arithmetic
(this shows that the “greater” and §
the “lesser” digits of the period appear “equally often”). If the number j
of digits in the period is odd, then the arithmetic mean of these }

mean of the digits 0,1,2, ---,9

digits i1s different from 9/2.

100.* Prove that if the numbers of the following sequence are f;

written as decimals,

al ﬂz "33 a-n

o —— —— e——
" & &

p:pzrpgr :pﬂr"'r

(where p is a prime different from 2 or 5, and where a,, as, -, a, |
are all relatively prime to p), then some (perhaps only one) of the
first few decimal fractions may contain the same number of digits }
in their periods, but the subsequent decimal fractions of the sequence 3
will all have p times as many digits in their periods as has the

preceding term.

For example: 1=0.3; $ =04, 19 =0.370; 89 = 0.987654320; 1:,[%
has 27 digits in its period; %3§ has 81 digits in its period; and so on. ]
Remark: By ‘‘the greatest integer in z'’ we shall mean the greatest integer

not exceeding x (that is, to the left of £ on the number axis if £ is not a whole
number). This concept will be designated by the use of brackets, that is, by |

writing [r]. For example: [2.5] =2, [2) =2, [-2.5] = —

101. Prove the following properties of the greatest integer in a |

number.
Q) x+yl=[x] +[y].
(2) [%l] — [—?—‘Z—-] , where 7z 1s an integer.
(3) [x]+[x+-i—:|+ +[x | ngl]z[nx].

102.* Prove that if p and ¢ are relatively prime natural numbers,f

then

Problems (99-107 ) o5

K 2]+ [ [+ [42E
[ ] [ ]+[-1—q]+... _|_[(P;1)q]_(13—1)2(q—1)'

103. (a) Prove that

Y {/ n {7 n
t1+t2+t3+”'+tﬂ_[T]+[2]+[3]+ +[ﬂ]’

where . is the number of divisors of the natural number n. [Nofe:

1 and »n are always counted as divisors.]
(b) Prove that

n n
O +sn=[—%—]+2[—’—;-—]+3[—§-]+ +n[-;¢—:|,

where s, is the sum of the divisors of the integer »

104. Does there exist a natural number »# such that the fractional
part of the number (2 + 1/ 2 )*, that is, the difference

C+vV2er—[@2+v 2y,
exceeds 0.999999?

105.% (a) Prove that for any mnatural number #, the integer

(2 + 1" 3 )] is odd.
(b) Find the highest power of 2 which divides the integer

[(1+173)].
106. Prove that if p i1s an odd prime, it divides the difference
(2 + V5 )] — 2v71

107.* Prove that if p is a prime number, the difference

Ch — [ﬁ-—]
p
1s divisible by p. (C% is the number of combinations of » elements

taken p at a time, where » is a natural number not less than p.)

For example,
11-10.-9.8.7

5 — e ——— =i
Cih = 1 5.3.4.5 = 462 ;
0151 — —151 = 462 — 2,

which is divisible by 5.



26 Some Problems in Arithmetic |

108.* Prove that if the positive numbers & and 8 have the property

that among the numbers

(], (241, [3al, ---; (8], (26),[38], - -

every natural number appears exactly once, then « and # are ir-
rational numbers such that 1/e + 1/8 =1. Conversely, if « and B1
are irrational numbers with the property that l/& + 1/3 =1, then

every natural number NN appears precisely once in the sequence

la], [2a], 3], --+;  [B],[2B], [3B], - .

We shall designate by (a) the whole number nearest a. If g lies exactly be- ;5,
tween two integers, then (a) will be defined to be the larger integer. For ex- f‘_

ample: (2.8)=3; (4) =4, (3.5) = 4.

109.* Prove that in the equality

N =2Y | ¥ SR el S
>t 1 T3 T

(where N 1s an arbitrary natural number) every fraction may

replaced by the nearest whole number:

V() @)+ @) ()

O

EQUATIONS HAVING INTEGER SOLUTIONS

110. (a) Find a four-digit number which is an exact square, and
such that its first two digits are the same and also its last two digits
are the same.

(b) When a certain two-digit number is added to the two-
digit number having the same digits in reverse order, the sum 1s a
perfect square. Find all such two-digit numbers.

111. Find a four-digit number equal to the square of the sum of
the two two-digit numbers formed by taking the first two digits and
the last two digits of the original number.

112. Find all four-digit numbers which are perfect squares and
are written:
(a) with four even integers;
(b) with four odd integers.

113. (a) Find all three-digit numbers equal to the sum of the
factorials of their digits. |
(b) Find all integers equal to the sum of the squares of their

digits.

114. Find all integers equal to:
(a) the square of the sum of the digits of the number;
27



28 Equations Having Integer Solutions

(b) the sum of the digits of the cube of the number.

115. Solve, in whole numbers, the following equations.
(@ 1'+21+3"+--- 4+ 2t = y2,
() 11420 +31 4 -« 4 xl = yr

116. In how many ways can 2" be expressed as the sum of four

squares of natural numbers?

117. (a) Prove that the only solution in integers of the equation f.

xt + y: 4 22 = 2xyz
1S x=y =2z =0.
(b) Find integers zx, vy, z, v such that

X2+ ¥4+ 22+ vE = 2xyzv .

118.* (a) For what integral values of % is the following equation

possible (where x, y, z are natural numbers)?

x* + y* + 2 = kxyz.

(b) Find (up to numbers less than 1000) all possible triples

of integers the sum of whose squares is divisible by their product.

119.** Find (within the first thousand) all possible pairs of rela-
tively prime numbers such that the square of one of the integers |

when increased by 125 is divisible by the other.

120.* Find four natural numbers such that the square of each of f
them, when added to the sum of the remaining numbers, again §

yields a perfect square.

121. Find all integer pairs having the property that the sum of

the two integers i1s equal to their product.

122. The sum of the reciprocals of three natural numbers is equal

to one. What are the numbers?’

123. (a) Solve, in integers (positive and negative),

1 1 1

x oy 14 °
(b)* Solve, In integers,

1,1 _1

x 0y oz

(write a formula which gives all solutions.)

Problems (115-130) 29

124. (a) Find all distinct pairs of natural numbers which satisfy

the equation
x¥ = y* .

(b) Find all positive rational number pairs, not equal, which
satisfy the equation
xy — y::

(write a formula which gives all solutions).

125. Two seventh-grade students were allowed to enter a chess
rournament otherwise composed of eighth-grade students. Each con-
restant played once against each other contestant. The two seventh
graders together amassed a total of 8 points, and each eighth grader
<cored the same number of points as his classmates. (In the tourna-
ment, a contestant received 1 point for a win and § point for a tie.)
How many eighth graders participated?

126. Ninth- and tenth-grade students participated in a tournament.
Fach contestant played each other contestant once. There were ten
times as many tenth-grade students, but they were able to win only
four-and-a-half times as many points as ninth graders. How many
ninth-grade students participated, and how many points did they
collect?

127.* An integral triangle is defined as a triangle whose sides are
measurable in whole numbers. Find all integral triangles whose
perimeter equals their area.

128.* What sides are possible 1n:
(a) a right-angled integral triangle;
(b) an integral triangle containing a 60° angle;
(c) an integral triangle containing a 120° angle’

(Write a formula giving all solutions.) |
Remark: It can be shown that an integral triangle cannot have a rational
angle (that is, an angle whose degree measure is a rational number) other than

one of 90°, 60°, or 120°.

129.* Find the lengths of the sides of the smallest integral tri-

angle for which:
(a) one of the angles is twice another;
(b) one of the angles is five times another;
(¢c) one angle is six times another.

130.** Prove that if the legs of right-angle triangle are expressible
as the squares of integers, the hypotenuse cannot be an integer.
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131, Prove that
(n+1)n+2n+3)---@2nr—12n=2"1-3-5---2n - 32n — 1) .

132. Calculate the following sums.

1 | ]' | .......;I.'..__._ ¢« v - 1 .
@) 1-2 2.3 34 * " w—Dn’

1 1 1 1
b F e+ o o -
(b) 1-2-.3 ° 2-3-4 + 3:4-5 T n—2)n—1)n’
(c) [N S — -

1-2-3-4 2-3-4-5 3-4-5-6

1

o n—3n—2)X#n — Dn"

133. Prove that

nn + D(n +2)
3 H
(b) 1-2-.3+2:-3:4+3-45+ --- +nln+ D(n +2)

@ 1:2+4+23+34+---+nn+1)=

4
30

K
1

i3
¥
"l
i
i
1
:.|
IR -
-
.I
..l

nn + 1)(n + 2)n +3) . |

Problems (131-139) 31

) 1-2:3---p+23--p(p+1)+ --- +nn+1)
nin+1n+2)--n+p)
p+1

bt p—1) =

for any p.

134. Calculate the following sums.

(@) 12+28+ 3>+ --- +n?;
(b) 194+ 2°+ 34 - +n*;
() 1*+2¢+3+ -+ +nt;
d 13+3+5+ - +2n—3)>.

135. Prove the identity

a+bl+a)+cl+aXl+b)+dl+a)l+ b1+ c)
+ -+l +a)1+0)---(1+ k)
=(1+al1+b1+c¢)--A+10)—1.

Investigate the case in whicha=b=c=--- = L.

136. Calculate the following.
a) 1-1'+2.214+3-3'+ -+ +n-nl;
(b) Cus1 + Chss + Covs+ oo + Crsk -
137. Prove that

1 4 1 1 - 4 ... . 1 ......1 _
log: N l0g 00 IV logioa N

logs N | log N
where 100! is the product 1-2-3---100.

138. Given n positive numbers a,, a,, - - -, aﬂ.' Find the sum of alil
the fractions

1
ax (@, + ar, N, + ar, + ar): (@, + G, + -+ + ax,)

where the set %, k., ---, k. of 1Indices runs through all possible
permutations of 1,2, ---, n (of which there are »n!).

139. Simplify the following expressions.

@ () g)( gt ) ()

(b) cos @ cos 2ea cosda - -+ cos 2" .
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140. How many digits are there in the integer 2'° after it has |

been “multiplied out”?
141. (a) Prove that
1 1 1 3 5
5 102 2 1 6 100 <710
(b) Prove that
1 3 5 99 1

_—

2 16 100 < 12

problem (a).

142. Prove that
2100

- __ 50
101/ 2 = “1 < 7

(Cioe is the number of combinations of one-hundred elements taken
fifty at a time.) |

143. Which 1s larger, 99" + 100" or 101" (where »n is a natural
number)?

144. Which 1s larger, 100%°® or 300! ?

145. Prove that, for any natural number #, the following is true:

2<(1+-1—)“<3.

n

146. Which i1s larger, (1.000001)!-000.000 oy 27
147. Which 1s larger, 1000'°° or 1001999’

148. Prove that for any integer n > 6

(3 > (3

149.* Prove that if m > n (where m, n are natural numbers);

@ (1+4)s (e Ly

For exampvle,

2 3
(1+—-;—) _ 9 _ol nd <1+i-) _ o _L,10 .1

4 4

K

Remark: The result of problem (b) is evidently a refinement of that of

Problems (140-150) 33
m n+1
(b) (u;) “<(1+-l)+ (nz2).

For example,

1\* 27 3 1N 26 .13 .3
(1[_)__. ] _38,and(1+ 3) = 31 ——381 <38.

From problem (a) it follows that in the sequence of numbers (1 + 1/2)7
(1 4 1/3)3 -+, (1 +1/n)", ---, each is greater than that preceding. Since, on
the other hand, no member of the sequence exceeds 3 (see problem 145), it
follows that if n — oo, the magnitude of (1 4+ 1/n)® approaches some definite
limit (which is evidently a number between 2 and 3). This limiting number is
designated by e. It is equal, approximately, to 2.718281828459045- . -.

Analogously, problem 149 (b) shows that in the sequence (1 + 1/2)3, (1 + 1/3)4,
(1 + 1/4)%, -+, (1 + 1/m)»*?, ... every number is less than that preceding. Since
every number of the sequence exceeds 1, the magnitude (1 + 1/n)?*!, where n
increases without bound, tends toward some limiting number. The numbers
of the second sequence then become successively closer and closer to the
numbers of the first {that is, the ratios (1 + 1/#)?+1: (1 4+ 1/n)®» =1 4+ 1/n become
closer and closer to 1]. Hence, the limiting number must, in the second case,
also be equal to e. This number, e, plays a very important role in higher
mathematics, and is encountered in a wide variety of problems (see, for ex-
ample, problems 156 and 159).

150. Prove that, for any integer n, the following inequality holds,

i n n
(f—) < nl < n(—-) ,
€ €

where ¢ = 2.71828--- 1s the limit of (1 + 1/»)* as u# — oo,

This result is an extension of the result of problem 148. It follows, in par-
ticular, that for any two numbers, a; and a2, such that a; < ¢ < a2z (for ex-
ample, for a; = 2.7 and a; = 2.8; for a; = 2.71 and a; = 2.72; for q; = 2.718 and
a: = 2.719, and so on) for all integers m which are ‘large enough’ (greater
than some integer N, where the magnitude of N depends on what a; we con-
sider), the following inequality holds:

n \» n \"
(-—) >n! > (—-—-) :
ai (L2

Thus, the number ¢ is that limitig number which separates the numbers a for
which (n/a)* exceeds, or ‘‘dominates,”’” n! from those numbers a for which the
(n/a)® are ‘‘dominated’’ by n!. (The existence of such a limiting number
follows from problem 148.)

Actually, (n/a:)* < n! for every n exceeding 6 [if a2 > e, and if n > 6, In
view of problem 150, n! > (nfe)"]. Further, from the results of problems 145
and 149, it follows that, for n = 3, the following inequalities hold:
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n nn
npntl > (.n + 1)‘“ ,

(R T— n+1 -
V> Vn+l;

n — . " " - - .

consequently, for n = 3, v n diminishes as n increases. It is readily seen |}
. T e— . . 1'_

that if » becomes very large, v n approaches as close to. unity as we wish, }

k e _
It follows, for example, that log '+ 10 — k/10%, for sufficiently large k, can
be made as small as we wish. Let us now select an N such that the inequality ;

N, — - ;;
v N < e/a; holds. Then for n > N the approximation ¥ 7. < efa; is still

more improved, and from problem 150 it follows that

nie \» n \»
n! < (ﬂ A ) < (—-) .
'./n i

The inequality of problem 150 admits a great deal of precision. It is possible
to show that for sufhciently large n the number n! is approximated by

Cv''n (n/e)?, where C is a constant equal to v 2r :

—/ n \n1
nt~ v ()

[more precisely, it is possible to prove that if » increases without bound, ratio

n!
v 2mm (n/e)™

tends to unity. (See the book by A. M. Yaglom and E. M. Yaglom, Non-
elementary Problems Treated by Elementary Means, Library of the Mathe- |

matical Society, Volume 5)].

151. Prove that

1

k+1<1k k k .. k
k+1n + 2F 4 3* + + n

1\*t1 1
1 — k+1
<(+n) }5':+1;'z

(n and %k are arbitrary integers).

Remark: A particular consequence of problem 151 is the following:
1im1‘°+2“+3'=_-|_-__:_-_:__-t__@_f= 1 |
s 00 nk+1 k41
(See also problem 316.)

152. Prove that for all integers n > 1:

Problems (151-156) 39

1 1 1 1 3
- Foere A < =,

() 2<n+1+n+2 2n 4

1 1 1
- + - o < 2,
(b) 1<n+1+n+2 3n + 1

153.* (a) Calculate the whole part of the number

1 1 1 | 1

1JH/"‘Q‘ | 1/'3‘+1/'?4"+ 171,000,000 °

(b) Calculate the sum
1 1 1 1

710,000 T /10001 /10,002 ' " 171,000,000

to within a tolerance (allowable error) of 1/50.

154.¥ Find the whole part of the number
1

1 1 1 |
¥i T ¥s ¥e T ¥/T,000,000
155. (a) Determine the sum

11 1 1
0r T1E T T T 10008

to a tolerance of 0.006.
(b) Determine the sum

]‘ i 1 _].;_- . o s -] 1
o T T T T Tooo!

to a tolerance of 0.000000015.

156. Prove that the sum

1 1 1 1
]. + _2" + §' 1 4 + i "
is greater than any previously selected number N, if » is taken

sufficiently great.

Remark: The calculation of this sum can be made very precise. It is pos-
sible to show that the sum

1 1 1 1
1+-2"_+3|4| +nr

for large n, is very close to the value of logn (this logarithm taken to the

t The approximation given for n! is usually referred to as Stirling’s formula E _
A base ¢ = 2.718- - .). In every case, it can be shown that for any n the difference

[ Editor]).
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1 1 1
1-|-2+-3—+~--l— — logn

does not exceed unity (see the reference following problem 150 to the book by ;

A. M. Yaglom and E. M. Yaglom).
157. Prove that if in the summation

Ill]‘l]'l..._].'_.
1.2.3.4| +n

we throw out every term which contains the digit 9 in its denomi-
nator, then the sum of the remaining terms, for any #, will be Iess

than 80.
158. (a) Prove that, for any », the following holds:
1 1 1 1 1
bty tgtggto vt <2
(b) Prove that for all »
1 1 1 1 3
b g " 9 16 i S 4

It is evident that the inequality of problem (b) is a refinement of problem
(a). An even more precise bound in given by problem 233. That problem

shows that the sum

1'1+L+ +L
4 9 ne

1s less than n2/6 = 1.6449340668- .. (but for any number less than n2/6, for in-
stance for N = 1.64 or for N = 1.644934, it is possible to find an = such that

the sum
1 1 1
1+T+'9_+ |%2
will exceed N).
159.* Consider the sum
1. 1r 1 1 t 1 1 1 .. .1
I+ 5 +3+5 7711 T3 T T 19 +p’

in which the denominators run through the prime numbers from 2
to some prime number p. Prove that this sum becomes greater than

any preassigned number N, provided the prime p is taken sufficiently

great.

Remark: The summation of the series in this problem can be found with
great accuracy. For large p, the sum

Problems (157-159) 37

1 1 1 1 1

1-|--§—-I—3-l-5 +7+- +p
differs relatively little from log log p (where the logarithms are taken to the
hase ¢ = 2.718---), and the differences

1 1 1 1 1

-t T .o +— —log lo

1 + 5 + 3 + S + - p g log p

never exceed 15 (refer to the book by A. M. Yaglom and E. M. Yaglom).
Comparison of the results of this problem with those of problems 157 and 158
emphasizes that among the prime numbers may be found arbitrarily large
integers (this problem reaffirms that there are infinitely many). It is possible,
for example, to say that the primes are ‘‘more numerous’’ in the sequence of
natural numbers than either squares or numbers failing to contain the digit 9,
inasmuch as the sum of the reciprocals of all the squares, as well as the sum of
all those reciprocals of whole numbers not containing the digit 9, are bounded
(by 13 and by 80, respectively), whereas the sum of the reciprocals of all

the primes becomes arbitrarily great.




MISCELLANEOUS PROBLEMS
FROM ALGEBRA

160. If a + & + ¢ =0, what does the following expression equal?

bﬂ—c c—a a—b a b C
( a b | C )(b-c+c—-a+a—b)'

161. Prove that if a + b + ¢ = 0, then
a® + b® + ¢® = 3abc .
162. Factor the following:

(@) a®+ b® + ¢® — 3abc :
(b) (@+b+c¢P—a3— b —c?.

163. Rationalize the denominator:

1
Va+¥b+¥c
164. Prove that
(a _|_ b _|__ 6)333 o a333 _ b333 - 0333
1s divisible by

a@a+b6+4+c)P—a®— b — ¢t
38

Problems (160-169) 39

165. Factor the following expression:

al®+a*+ 1.

166. Prove that the polynomial
x9999 + x&ﬁﬂﬂ + x???? + . s a _|_ x2222 + xllll _|_ 1
i divisible by
L4+t e+t x+ 1.
167. Using the result of problem 162 (a), find the general formula
for the solution of the cubic equation
X+ px+q=0.

Remark: This result enables us to solve any equation of the third degree.
Let
¥+ Ax?+ Bx +C =20

be any cubic equation (the coefficient of x® is taken as 1, since in any other
case we can divide through by the coefficient of x3). We make the substitution

x=Y +c,
and we obtain
Y+ 3yt + 3ty + e+ A+ 2y +c) 4+ Bly+e)+C=0,
or
Y2+ (3¢ + A)y* + (3¢t +2Ac + B)yy + (¢ + Ac*+ Be+ C) =0,

From this, if we set ¢ = —A/3 (that is, x = ¥y — A/3), we arrive at
At 2A? A A3 AB
3 — - | | o e e
y+(9 9 'B):‘”( 27 T 9 T 3 +C) .

which has the same forms as that of the given problem:

v¥+py+g¢=0,

where
At _24* AB
D= — 3 - B and q = 27 3 + C.

168. Solve the equation

Va—-Va+tx=x.
169.* Find the real roots of the equation

1 ‘ 1 1
x3 2 ——— T — ]/ 2 - (0 < < ‘—') .
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170. (a) Find the real roots of the equation

/ " —
]/x-|—2\/x+21/x+ e+ 2V + 2V 3 = x
S e

{n ra::iicals}

(all roots are considered positive).
(b) Solve the equation

I
=

1 4

X

(In the expression on the left the fraction designation is repeated = 3_

times.)

171. Find the real roots of the equation

1/x+3—41/x—1—|—1/x+8——61/x——1=1.

(All square roots are to be taken as positive.)

172. Solve the equation
lx+1|—jx|+3|x—1|—-2|x—2\=x+ 2.
173. A system of two second-degree equations

{ xz__yzzor
(x—a)}+y*=1

has, in general, four solutions. For what values of a is the number j§

of solutions of this system decreased to three or to two?

174. (a) Solve the system of equations

{ax+v=az,
x+ay=1.

For what values of a does this system fail to have solutions, and

for what values of a are there infinitely many solutions?
(b) Answer the above question for the system

{ax+y=a3,
x+ay=1.

Problems (16 0-179) 41

(c) Answer the above question for the system
ax+y+z=1,
"X+ ay +z=a,
x+z+4+az=a*.

175. Find the conditions which must be satisfied by the numbers
w,. s, @, &s such that the following system of six equations in four
unknowns has a solution:

X1 T Xg — &)Xy ,
X1 T X3 = & &3 ,
X1 + Xy = aa,
Xo T X3 = ot¥y
Xo T Xy = 2y ,
X3 + Xy = &y .

Find the values of the unknowns x,, Xa, X3, X..

176. How many real solutions has the following system?

{x+y=2,
xy —22=1.

177. (a) How many roots has the following equation?

X
100

(b) How many roots has the following equation?

sin x =

sin x = log x .
(Note: log x = log,ox.)

178.* Prove that if x, and x, are roots of the equation x* — 6x +
1 =0, then x + x; is, for any natural number #, an integer not
divisible by 5.

179, Is it possible for the expression

2 2 9 9
@y 4+ @y 4+ +++ + Qgog + @ro0s): = Q1 + a3 + *+ + Aies + A1o0o
-T- 2&1(12 -+ 2&163 + o + 21199931000

(where some of the numbers a,, @, - -, @ss, 1000 are positive and the
test are negative) to contain the same number of positive and nega-
tive terms in a;a,?

Investigate the analogous problem for the expression

(@, + @y + - ++ + @990 + @10.000)% .
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180. Prove that any integral power of the number V' 2 — 1 can ;f
be expressed in the form VN — VN —1, where N is an integer §
9 —1/8, and (V' 2 —

(for example: (V2 —12:=3—-212 =
~12=5/2 —7=1150 —V49.

181. Prove that the number 99,999 + 111,1111/3 cannot be written |

in the form (A + BV 3 )%, where A and B are integers.

182. Prove that ¥ 2 cannot be represented in the form p + q1/ 7,

where p, g, r are rational numbers.

183. (a) Which of the following two expressions is greater?
2.00000000004 _
- (1.00000000004)% 4+ 2.00000000004

_ 2.00000000002
(1.00000000002)% + 2.00000000002

(b) Let a > b > 0. Which of the following is greater?

l+a+a®+:--+a'
l+a+a®*+---+a* °

14+b+b 4 - + b
1 4+b+0+--+ b

184. Given n numbers a;, a,, - - -, Q..
the sum

(x—a)*+{x—a)*+ - +(x — a,)?

has the least possible value.

185. (a) Given four distinct numbers @, < @, < @; < a,.. Put these }
numbers in such an order, a., a., @i, ai, (i, i3, i3, 1, being some rear- |

rangement of 1, 2, 3, 4) that the sum
O = (a; — fl'iz)z + (@i, — ai,)* + (@i, — aii)z + (@:, — ail)z

has the least possible value.
(bY* Given n real distinct numbers a,, a, --

numbers in such an order a;,a;,, ---, a:, that the sum
O = (ml — at_z)z + (mz — di3)2 + e (din_l — ﬂin)z +- (a,;n - ﬂil)z

has the least possible value.

186. (a) Prove that, regardless of what numbers a,, a,, - -, @, 01,

b,, - -+, b, are taken, the following relation always holds:

Find the number x such that

3

-, @n. Put these 4
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V@ + B+ Vai+ b+ + VL B
;-l/(al+a2+ +an)2+.(b1+bz+ 'i"w.

Under what conditions does the equality hold?

(b) A pyramid is called a right pyramid if, when a circle is
inscribed in its base, the altitude of the pyramid falls on the center
of the circle. Prove that a right pyramid has less lateral surface
area than any other pyramid of the same altitude and base area and

having the same perimeter.
Remark: The mequality of problem (a) is a special case of what is called
the Inequality of Minkowski (see problem 308).

187.* Prove that for any real numbers a,, a,, - -, a, the following
inequality holds:

Vad+(0—a)+Va+(1—a,
+ ‘e -+ 1/633;.-—1 + (1 '_'aﬂ)z + ]/511 + (1 — al)—;; nl; 2 .

For what values of the numbers 1s the left member equal to the
right member?

188. Prove that if the numbers x, and x, do not exceed 1 in ab-
solute value, then -

2
1/1—-x%+1/1—_7;gz)/1—(x‘;“"2) .

For what numbers x, and x. does the equality hold?
189. Which is greater, cos (sin x) or sin (cos x)?

190. Prove, without using logarithm tables, that:

(a) 1 1 L 2;
log, = logs =
1 1
b | > 2.
( ) logg T logn' 2

191. Prove that if « and B are acute angles, with @« < 8, then

(a) a¢—sina < B —sinf:
(b) tana —a@ < tanfg — 3.

192.* Prove that if @ and B are acute angles and a < 3, then
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tan « tan
< - .
2 B
193. Find the relationship between arcsin {cos (arcsin x)} an}_
arccos [sin (arccos x)).

194. Prove that for arbitrary coefficients as, @s, - -+, @z, @, the su
cos 32x + az; cos 31lx + azpcos 30x + -+ + A, COS2x + a, COS X

cannot take on only positive values for all x.

195. Let some of the numbers a,,a., ---,a. be +1 and the res#
be —1. Prove that

: a.a ad d: ayds,-ad
281n<a1 I itd 2 ! 142047 L. : 1462 ﬂl_n)4_50
| 2 4 2"

— anz - az\/’;2 -+ a31/2 + e+ aﬂ-{/? .

For example, let ¢, =a; = -+ = a, = 1:

. 11 ,
2811’1(1-{— 9 ~+- 1 + e on -1

THE ALGEBRA OF POLYNOMIALS

196. Find the sum of the coefficients of the polynomial obtained
after expanding and collecting the terms of the product

(1 — 3x + 3x2)™3(1 4+ 3x — 3x2)74* .
197. Which of the expressions,
(1 + x2 - xa)wuu ot (1 — x2 + xﬂ)lﬂﬂﬂ :

will have the larger coefficient for x?* after expansion and collecting
of terms?

198. Prove that in the product
A=z +x2— x84 o0 — 2%+ 21901 + x + a2 + -+ + 2% + x10)

gfter multiplying and collecting terms, there does not appear a term
il x of odd degree.
199. Find the coefficient of x*° in the following polynomials:
(@) (14 219 + x2(1 + x)°° + 231 + )98 + - -+ + x990
b) A +x+20+ 22+ 31+ x°+ --- + 10001 + x)t000 .
200.* Find the coefficient of x* upon the expansion and collecting

of terms in the expression
45
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A

(S(_(_x—:_2)2:2)2—-2)2—— —_23/2.
n times

201. Find the remainders upon dividing the polynomial x + x°
x? + x* + 8l - x243
(a) by x—1;

(b) by x*—1.

202. An unknown polynomial yields a remainder of 2 upon division_}
by x — 1, and a remainder of 1 upon division by x — 2. What re_f
mainder is obtained if this polynomial is divided by (x — 1)x — 2)?

203. If the polynomial x'*t — 1 is divided by x* + x* + 2x* + x + 1_
a quotient and remainder are obtained. Find the coefficient of x'* 1y
the quotient.

204. Find an equation with integral coefficients whose roots includ
the numbers

@ 12 +1V 3,
by V2 + ¥3.
205. Prove that if @ and B are the roots of the equation
x*+px+1=0,
and if 7 and ¢ are the roots of the equation

x2+qgx+1=0,
£

.-
JJ

then
(@ — 7)B — rXa + 0)B + 0)=q*— D"
206. Let & and B be the roots of the equation
2+ px+q=0,
and r and & be the roots of the equation
x4+ Px+@Q=20.
Express the product
(@ — 7XB — 7X@ — 0)(B — 0)
in terms of the coefficients of the given equations.
207. Given the two polynomials

v24+ax+1=0,
2+x+a=0.

Problems (201-2 14) 47

Determine all values of the coefficient ¢« for which these equations
have at least one common root.

208. Find an integer a such that (x — a)(x — 10) + 1 can be written
.s a product (x + b)x + ¢) of two factors with integers b and c.

209. Find (nonzero) distinct integers a, b, and ¢ such that the fol-
lowing fourth-degree polynomial with integral coefficients, can be
written as the product of two other polynomials with integral coef-

ficients:
x(x—aXx—b}x—c¢)+1

210. For what integers a,, a., - -, @,, where these are all distinct,
are the following polynomials with integral coefficients expressible
as the product of two polynomials with integral coefficients?

(a) (x —a))x — a)(x—as) - (x —a.) — 1,

(b) (x —a)(x — aXx —as)---(x—a,) +1.

211.* Prove that if the integers a,, a;, : -+, a, are all distinct, then
the polynomuial

(x —a)(x —a)? - (x —ay) +1

cannot be written as a product of two other polynomials with integral
coefficients.

212. Prove that if the polynomial
Plx)=ax® +a,x" '+ «++ + @p-1x + ay ,

with integral coefficients, takes on the value 7 for four integral values
of x, then it cannot have the value 14 for any integral value of x.

213. Prove that if the polynomial
aox’ + ax® + a.x® + azxt + ax® + asx* + agx + aq ,

of seventh degree, with integral coefficients, has for seven integral
values of r the value +1 or —1, then it cannot be factored as the
Product of two polynomials with integral coefhicients.

214. Prove that if the polynomial
P(x) = QoX™ + alxﬂ_l 4+ v Au— X T+ Ay ;

With integral coefficients, has odd values for x = 0 and x = 1, then
the equation P(x) = 0 cannot have integral roots.
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215.* Prove that if the polynomial

Px)y=aux*+ax" "'+ +++ + Quax + Qs ,

with integral coefficients, is equal in absolute value to 1 for twf

integers x = p and x =g (p > ¢), and 1if the equation P(x) =0 h'
2

216.* Prove that neither of the following polynomuials can be
ten as a product of two polynomials with integral coefficients:

(a) 22222 | D,2220 4 Ao2218 | 2216 | 42214
+ oo 4 2218x* + 2220x% + 22 .v
+x*+x+1.

rational roots g, then p — g is equal to 1 or 2, and a =

(b) x250 + x249 + x243 + .. s

217. Prove that if the product of two polynomials with integ
coefficients is a polynomial with even coefficients, not all of whid
are divisible by 4, then in one of the polynomials all coefﬁcien
must be even, and in the other not all coefficients will be even. |

218. Prove that all the rational roots of the polynomial

Px)=x"4+ ax*' 4+ ax" 2+ <+ + Gup1X + Qu ,

with integral coefficients and with leading coefficient 1, are intege_l;

e
-4
B

219.* Prove that there does not exist a polynomial
P(X) = AoX" + a1xnnl + ..

such that P(0), P(1), P(2), --- are all prime numbers.
Remark: The proposition stated in this problem was first proven by ¢
mathematician L. Euler. Also credited to him are polynomials whose val |
for many consecutive integers are prime numbers. For example, for the po
nomial P(a;) — 22 — 79z + 1601, the 80 numbers P(0) =1, P(l) = 1523, P(
P(3), ---, P(79) are all primes.

+ aAn—1 X +'a"

220. Prove that if the polynomial
P(x) = X" "I' Alxﬂ-l + Azx"_2 + e + An--l + Au

assumes integral values for all integral values for x, then it 1s H
sible to represent it as a sum of polynomials

Pyx) = 1, P(x) = x, Pi(x) = -‘fﬁ-’-;-:z-l-)— ., Pu(x)
x(x — 1)(x — 2)- - (x—-n + 1)

ek p———

..
, . ."‘.:.. a
1 2 3 f .

—t—
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having the same property [in view of problem 49 (a)] and having
integral coefficients.

991. (a) Prove that if the nth degree polynomial P(x) has integral
values for x =0,1,2, ---, n, then it has integral values for all integral
Values of x. -

(b) Prove that if a polynomial P(x) of degree » has integral
values for # + 1 successive integers x, then it is integral valued for
all integers Xx.

(¢) Prove that if the polynomial P(x) of degree » has integral
values for x=0,1,4,9,16, ---, #n?, then it has integral values for all
integers x which are perfect squares (but this does not necessarily
follow for all integers x). |

Give an example of a polynomial which assumes integral values
for all integers x which are perfect squares, but which for some
other value of x yields a rational (not whole) number.
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In many of the problems in this section the following formulas are g
useful. i
(1) The formula for the product of complex numbers in trigonometric form*‘

(cos a + 1sin a)(cos B + isin B) = cos (a + B) + isin(a + B) .

(2) De Moivre’s formula: 3

[RGB Wi g ¥ CTRGT Y PEm—— P e, L TR e L R R -

(cos a + 1 sin a)® = cos na + ¢ Sin na g
B

a - = ]
(where n is a natural number), which 1s an n-fold application of the prev:ou:ﬂ
formula. -

(3) The formula for the roots of complex numbers:

- ':I.' '-.
.l
‘:" !

360° - k . a+360°-k
VoS a + 18ina = COS al +'n + 1 sin — "
(k — Or 1: 2: e, N 1) *

Rl I'.'-'-' '_

which is an extended form of De Moivre’s theorem.
In particular, a large role is played in the following problems by the formul&

for the mth rooths of unity, that is, the roots of the nth-degree equation

..1

n—-1=0,
which are given by the following formulas:
—_ *360° - k .. 360°-k
V1 = Vcos0 + isin0 = cos - + 1 sin -
(k=0,1,2,- ,ﬂ—-‘l)r

o0

Problems (222-225) 51

The following observation will often be useful in solving the problems of
this section. Let the equation of degree =,

™ 4+ a1 2" @2+ -+ an +an =0,
have the m roots i, %z, ---, Tn-1, ¥n. Then the left member of the equation is
divisible by (x — z1)(x — %2)- - -(x — x»); that is,

2+t 4 -+ A Q= (2 — i) — 22)- (X — 1) — Tn) .

1f we multiply out the second member of this equation and equate coefficients

of like powers of x from both members, we obtain the following formulas giving

relationships between the coefficients on the left and the roots of the equation
(Vieta's formulas).

ar= —(@1+ 224+ -+« + Tn-1 + Tn),
A =212+ 13+ -+ + Tn-1Zn,
as = —(:cl:cza:a + .- -+ xn—zxu—lfﬂu) '

lllllllllllllllllllllllllllllllll

(—1)%~1(zy5- -

an = (—1)"x1 2223 - - T
222, (a) Prove that
cos o = cos’ e — 10 cos® e sin*a + Scos e sint &,

Bn—t + T1%2- Xp—2Tn + -+ + XoZz - Zn),

SInH5a = sina — 10sin® @ cos?* @ + 5 sin & cost & .
(b) Prove that for integers n
cosna = cosa — C:rcos™2asin?a + C? cos™* a sin* &
—Clcos"tasinfa + -,
. — 1 e | : 3 n—-3 T3
sinuna = C, cos™'asmmea — C,cos™? & sin® &
5 _ -
+ Cpcos™*asine — -+,

where the terms designated by ---, which are readily identified from

the given terms, are continued while they preserve the sense of the
binomial coefficients.

Remark: Problem (b) is, of course, a generalization of problem (a).

223. Express tan 6« in terms of tan e.

224. Prove that if x + 1 = 2 cos e, then
X

x™ xln = 2 COS ner .
225. Prove that

sin¢ + sin(¢ + &) + sin(¢ + 2a) + -+ + sin (¢ + na)

i+t D ( _3_@_)
sin 5 sin{ ¢ + 5

e I e — ,

sin o
2
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Problems (226-233) 53

and that 931, Find the following sums.

cos¢ + cos(p + &) + cos (¢ + 2a) + -+ + cos (¢ + na) , I 2 311
-8 (a) cot - cot? - cot? —
. (n+ Da N n + 1 2n + 1 n + 1
S1I — 9 COS (90 I > . Il
= . 3 + +-- + cot? :
. & 2n + 1
S —
2 i I 3 317
(b) csc - csC - Ccsc?
226. Find the value of n + 1 en + 1 n + 1
*a + cos?*2a + - + COS* na + -+ 4+ c¢sc? nh
COs? & + COS , i n+1
and of 932. Calculate the following products.
sinta + sin?2a + -+- + sin® ne . : (a) sIn sin 2 sin ST .. sin —2
227. Evaluate 2n + 1 2n + 1 2n + 1 2n + 17
cosa + Crcos2a + Cicos3a + -+ + Ci7 ' cos na + cos (n + e and
and sin —2%— sin —22-% sin —?’2—1’1—- +++ SIn (n — DI :
sina + Clsin2a + Cisin3a + -+ + Cr 'sinna + sin(n + De . "
228. Prove that if m, n, and p are arbitrary integers, then (b) cos 1 COS U COS 2 + ¢+ COS nil
' P ’ 2n + 1 2n + 1 2n + 1 2n+ 1"
. : : : II S
sin M in 2L + sin amil sin 27;” sin 3’;:” Sin 3’; and
. I 217 317 (n — 1)I1
. ( - l)mH . (p — I)HH 3 —— COS —— —_— a2 COS — _
... 4 sint2 p sin > cos -~ 5, COS o 5
-—%, if m + n is divisible by 2p and m — » is not divisible by 233. Using the results of problems 231 (a) and (b), show that for
any natural number » the sum
— 4L if m — n is divisible by 2p and m + # is not divisible by 2p§ L1 1
2 I+ o+ ot +
2 3* n*

0, if m + n and m — »n are both divisible by 2p, or if neith_'-'f

is divisible by 2p. lies between the values

(-1
n+ 1 2n+1/6

(o)t 1)
on + 1 m+1/6

229. Prove that

21 417 611 2niT 1 5
— | L ..« 4 COS = —
S+l Pt T TS 1 z 3

and

230. Construct an equation whose roots are the numbers:

21T 3 nll

. I7 . . . , ¥
(a) sin? , SIn? , Sin® , *++, SIn® —; .
2n + 1 2n + 1 n + 1 2n + 1 Remark: A particular result which follows from problem 233 is
2 , cot? , cot? , *, Cot® — ., . 1 1 1 2
) ot 1 27 + 1 on + 1 on+ 1§ R R TR
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where the summation on the left is the limit to which 1 + 1/22 + -+« 4+ 1 /
tends as n — o°.

234. (a) On a circle which circumscribes an #- -sided polyg
A.A, -+ A, a point M is taken. Prove that the sum of the squa
of the distances from this point to all the vertices of the polygon § i
a number independent of the position of the point M on the c1rcl
and that this sum is equal to 2nR?, where R is the radius of th
circle. +’

(b) Prove that the sum of the squares of the distances fro
an arbitrary point M, taken in the plane of a regular n-sided polyg
A, A, --A, to all the vertices of the polygon, depends only upon t
distance ! of the point M from the center O of the polygon, and |
equal to n(R? + %), where K is the radius of the circle mrcumscrlbl
the regular #n-sided polygon.

(c) Prove that statement (b) remains correct even when p01
M does not lie in the plane of the »z-sided polygon A A, A..

935  Let M be a point on the circle circumscribing a regular

sided polygon A,;A;---A.. Prove the following.
(a) If » is even, then the sum of the squares of the dlstan

from M to the vertices indicated by even- -numbered subscripts (f |
example, A., 4., and so on) is equal to the sum of the squared d

tances to the vertices having odd subscripts.
(b) If » is odd, then the sum of the distances from the p01

M to the vertices of the polygon which are even- -numbered 1s equ
to the sum of the distances to those which are odd-numbered.

?iﬁ

936. The radius of a circle which circumscribes a regular #- 51d
polygon A,A.---A, is equal to R. Prove the following.
(a) The sum of the squares of all the sides and all t

diagonals is equal to n*R®. 5
(b) The sum of all the sides and all the diagonals of t

polygon is equal to n cot an

(c) The product of all the sides and all the diagonals of t
polygon is equal to /2 Rin(n-11/2.

937 * Find the sum of the 50th powers of all the sides and 3
the diagonals of the regular 100-sided polygon inscribed in a c1rc
of radius K.

938 * Prove that in a triangle whose sides have integral

Problems (234-239) 55

i+ is not possible to find angles differing from 60, 90°, and 120°,

and commensurable with a right angle.

939.* (a) Prove that for any odd integer p > 1 the angle arc

COS 1 cannot contain a rational number of degrees.

p
(b) Prove that an angle arc tan f—-, where p and ¢q are dis-

rinct positive integers, cannot contain a rational number of degrees.



SOME PROBLEMS OF
NUMBER THEORY
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These problems are concerned with that division of mathematics treat
properties of integers, Elementary Number Theory. Many of the problems]}
other sections of this book also deal with number theory—particularly :"ﬁif;:}
3,4, and 5. Several of the following theorems, stated here as problems,
an important role in number theory (see, for example, problems 240, 241, f
247, 249, 253). Clearly, these problems do not pretend to explore with
completeness the rich variety of methods and ideas that have permeated
discipline, which is at once one of the most fruitful and one of the most &
ficult of all mathematical endeavors. A good systematic account of some -
of number theory is given in the book by B. B. Dynkin and V. A. Uspens_
Mathematical Conversations, Issue 6, Library of the USSR Mathematical -*
There the reader will find alternate solutions to some of the problems of
section. An excellent condensed treatment is the article by A. Y. Khincﬁ_
“Elementary Number Theory,”’ appearing in the Encyclopedia of Elemmt,i
Mathematics, Government Technical Publishing House, Moscow, 1951, wh
contains, as an appendix, an extensive bibliography covering the topics touchd
on in the article.

240. Fermat's Theorem. Prove that if p 1s a prime number,
the difference a® — a is, for any integer a, divisible by 2.

Remark: Problems 27 (a)-(d) are special cases of this theorem. _
941. Euler’s Theorem. Let N be any natural number and let'_f{
56

Problems (240-245) 57

he the number of integers in the sequence 1,2,3, ---, N—1 which
are relatively prime to N. Prove that if ¢ is any integer which 1s
_elatively prime to N, then a” — 1 is divisible by N.

pemark: 1f the number N 1is prime, then all the integers of the sequence
are, of course, relatively prime to N, that is, » = N — 1. In this case, Euler’s
theorem assumes the form a¥—1 — 1 is divisible by N, if N is prime. It 1s
clear that Fermat’s theorem (problem 240) can be considered a special case of
Euler’s theorem.

1f N = p", where p is a prime number, then of the first N -1 =p" — 1
positive integers, those not relatively prime to N= p" will be p,2p,3p, -,
N — p = (p*~! — D)p. Therefore, we have r = (p* —1) — (p"~1 — 1) = p* — p"~1,
and FEuler’s theorem provides the following corollary: The difference
ap"-P"~t — 1, where p is prime and a is not divisible by p, is divisible by p".

If N = p{ipy?---pik, where pi, ps, - - -, pi are distinct primes, then the number
» of prime numbers less than N and relatively prime to N is given by the

formula
1 1
)(1 )x...(l___l...)_
4 P2 Pk

(See, for example, the article by A. Y. Khinchin, referred to above.} If N = p”
is a power of the prime p, this formula yields

'er(l

1
" p p
which 1s the result obtained previously.

242.* According to Euler’s theorem, the difference 2 — 1, where
k=5 —~ 571 is divisible by 5" (see problem 241, and the remark
following it). Prove that there exists no % less than 5* — 5*! such
that 2 — 1 is divisible by 5~.

.243. Let us write, in order, the consecutive powers of the number
2.. 2,4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, ---. Note that in
this sequence the final digits periodically repeat with a period of 4:

2,4,8,6,2,4,8,6,2,4,8,6, --- .

Prove: t:.hat, 1f we begin at a suitable point of the sequence, the last
;311;1 é?llgns of the numbers of the sequence will also repeat periodically.
) the length of the period and the number of integers in the
cquence for which this observed periodicity occurs.

d'2€'14'* Prove that there exists some power of 2 whose final 1000
‘g1ts are all ones and twos.

245.  Wilson’s Theorem. Prove that: if the integer p is prime,
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then the number (p — 1)! 4+ 1 is divisible by p; if p is comp031t
then (p — 1)! + 1 i1s not divisible by p.

246.* let p be a prime number which yields the remainder 1 .
division by 4. Prove that there exists an integer x such that x? +
1s divisible by p.

247.** Prove the following. b
(a) If each of the two integers A and B can be represent
as the sum of two squares, then their product A-B can also be i
presented in this manner.
(b): All prime numbers of form 4n + 1 can be wrltten
the sum of two squares, and no number of form 4x + 3 can be !
expressed.
(¢) A composite number N can be written as the sum @
two squares if and only if all its prime factors of form 4n + 3 of
cur an even number of times.
For example, the numbers 10,000 = 2¢.5* and 2430 = 2%-32-5-13 c&
be represented as the sum of the squares of two integers (in the ﬁ
number there are no factors of form 4n + 3, and in the seco
number there is one such factor, 3, which occurs twice); the numk ,'
2002 = 2-7-11-13 cannot be represented as the sum of two squar

i
(the factors 7 and 11, of form 4» + 3, appear once). 1
‘r

248. Prove that, for any prime p, it is possible to find mtegers
and y such that x* + y*> + 1 1s divisible by p.

249, ** :

Prove the following.
(a) If each of two numbers A and B can be written as t
sum of the squares of four integers, then their product A-B
also be represented 1n this manner. 1

(b) Every natural number can be written as the sum of n
more than four squares.
example, 35 =25+9 4+ 1 =050%4 32 + 1% 60--—49+9+1—I—l—--72
3+ 12 + 12; 1000 = 900 + 100 = 30* + 10%, and so on.

250. Prove that no number of the form 4*(8% — 1), where #» and
are integers, that is, no number belonging to the geometric progr

slons

I.
r
{'r
i

7, 28, 112, 448, ---,
15, 60, 240, 960, ---,
23, 92, 368, 1472, ---,
31, 124, 496, 1984, ---

Probfé’m.s (24 6-252) 59

-an be a square or the sum of two squares or three squares of

mtegers.

Remark: It has been shown that every integer which cannot be written in
form an(8k — 1) is representable as the sum of three or fewer squares. How-

ever, the proof 1s very complicated.

951.** Prove that every positive integer can be written as the
<um of not more than 53 fourth powers of integers.

rRemark: Experimental trials indicate that integers of moderate size are
representable as the sum of far fewer fourth powers than 53. To the present
time, no integer has been produced which cannot be given as the sum of 19,
or fewer, fourth powers. (Of the numbers less than 100, only one—the number
79— reguires as many as 19 fourth powers; that is four terms of 2¢ and 15 units).
It has been conjectured that 19 fourth powers suffice for every integer, but no
proof of this has as yet appeared. The best result in this direction has been
the proof that every natural number can be written as the sum of not more
than 21 fourth powers. This is a substantial improvement over the proposition
given as problem 251, but the proof of it involves considerable higher mathe-
matics.

In problem 239 (b) 1t was stated that every integer can be written as the
sum of not more than four squares. [t has also been shown that every integer
can be written as the sum of not more than nine cubes.

All these propositions are embraced by the following remarkable theorem:
For every positive inleger k there exists a posilive integer N (depending, of
course, on k) such that every integer may be written as the sum of not more
than N kth powers of positive integers. This theorem has been provided with
several different proofs, but only recently has a proof been given which does
not require considerable higher mathematics. In 1942 the Soviet mathematician
U. V. Linnik gave the elementary proof. This proof 1s presented in the popular
little book by A. Y. Khinchin, Three Pearls of Number Theory, Government
Technical Publishing House, Moscow, 1949.t Although Linnik's proof is ele-
mentary, it 1s not easy reading. Khinchin himself remarks that almost any-

body can understand it with ““only two or three weeks work with pencil and
paper‘n

252.** Prove that every positive rational number (in particular,

“VEry positive integer) can be written as the sum of three cubes of
Positive rational numbers.

Remark: Not all positive rational numbers can be represented as the sum

Tf two cubes of positive rational numbers. Consider, for example, the number
- The equation

N ' An English translation has been published by Graylock Press, Rochester.
Y., 1952, 64 pp., $2.00 [Editor].
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11

can be written

A

(ng)® = (mg)* + (mp)p,
where m,n, p, and ¢ are integers. But it is known that no solution in intege
exists for the equation

xa + -ya — z3

(a proof of this may be found in most standard texts on number theory). )

SOME DISTINCTIVE INEQUALITIES

953. Prove that there exists an infinite number of prime numbe ‘

954. (a) Prove that among the numbers of the arithmetic pr'_:'
gressions 3, 7, 11, 15,19, 23, - - and 5, 11, 17, 23, 29, 35, - - - there are

infinite number of primes.
(b)* Prove that there are an infinite number of primes i

the arithmetic progression
5,9,13,17,21, 25, - - - .

(c)* Prove that there are an infinite number of primes ;.
the arithmetic progression
11, 21, 31, 41,51, 61, --- .

Remark: The following more general theorem holds: If the first term
an infinite arithmetic progression of integers is relatively prime to the .
mon difference, the progression contains an infinite number of primes. Ho-f_
ever, the proof of this theorem is quite complicated. (It is interesting that
elementary, albeit very difficult, proof of this classical theorem of num
theory was published for the first time only in 1952 by the Danish mathe

tician Selberg. Prior to this the only known proofs involved higher mathematicy

This section presents several problems relating to inequalities stemming from
two important inequalities which play a major role in mathematical analysis
and in geometry. These are the theorem relating arithmetic and geometric
means {problem 268), and the so-called Cauchy-Buniakowski inequality (problem
_289). Many problems on inequalities, not related to these two but of importance
in other applications, appear in other sections of this book (see, in particular
Sections 6 and 7). |

A great many interesting inequalities may be found in the Problem Book in
Algebra, by V. A. Kretchmer, Government Technical Publishing House, Moscow,
1950, where an entire chapter is devoted to inequalities. That book offers
alternative proofs of several of the inequalities presented here. There 1s also
much interesting material in the books by P. P. Korovkin, Inequalities (Govern-
ment Technical Publishing House, Moscow, 1951), by G. L. Nevyashy, In-
equalities (Pedagogical Publishing House, Moscow, 1947), and particularly that
by Hardy, Littlewood, and Polya, Imequalities, (Government Technical Publish-
ing House, Moscow, 1949).7

iThe .initial chapters of the last book may be read by persons not acquainted
With higher mathematics’

’I‘ .
he following problems are not presented in order of increasing difficulty.

;
br‘dThe la.st book was originally written in English. It is published by Cam-

ldge University Press, revised edition, [Editor].
61
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The ordering is such that in some instances the result of one problem will .
useful in solving the next; in other instances problems conceptually related ardg
grouped together. The simplest properties of inequalities are assumed knovm
In all the problems of this section, small English letters designate re
numbers. ..
Theorems on Arithmetic and Geometric Means and Their Applications §
We know, from formal mathematics courses, that the geometric mean of t *
positive numbers a and b is less than, or equal to, their arithmetic mean, @

a +b
2 !

and the equality holds only if @ = b. This is proved as follows. 4
If we square both members of the inequality and clear of fractions, we arriv

viab <

at
dab < (a + b)% .

Expanding the right member, transposing 4ab to the right side, and so on,
obtain
0 <a?—2ab+ 5= (a —b)?,

which clearly is true for all numbers a and b, since the square of any —f
number is nonnegative.
Hence, inequality (1) holds for every real number. Moreover, it is |
that (@ — b)? can be zero only if a = b; that is, the last inequality reduces
the equality only for a = b. Therefore, this criterion must hold also for 1
equality ().
Inequality (1) may be rewritten in the following equivalent form, which

shall use hereafter: 4

e )’ e+ p
If we expand the left member of (1), clear of fractions and put all terms J
the right member, we obtain

IA

0 < 247 + 2b% — (a? + 2ab + b%) = (a — b2 . L
Use of inequalities (1) and (1’) simplifies the solution of the first of the pr‘o
lems which follow. These two forms of the inequality are useful in the det

vation of many generalizations, the most important of which are the proposmﬁ
of problems 268 and 283. 4

The arithmetic mean of m positive numbers a;, az, - - -, an is defined by u-,_ﬂf_'
following expression:
a+az+ -+ + an

Aﬂ.(a) -

.+, an is defined as the Bt

v A
' "|

The geometric mean of m positive numbers ai, as, -
root of their product:

:
{

I'p{a) = Vaaz - an -

problems (255-26 1) 63

Finally, the harmonic mean of m positive numbers is the number H(a) such

that

1 _lfa + 1/az + - - + 1/ax
Ha) n

(the reciprocal of the harmonic mean of » numbers is the arithmetic mean of
the numbers inverse to the given ones). In particular, the harmonic mean of
two numbers a and b is determined by the equation

1_1(1 1)
¢c 2 \a b/’

from which ¢ = 2ab/(a + b).
955, (a) Prove that, of all rectangles having the same given
perimeter P, the square encloses the greatest area.
(b) Prove that, of all rectangles having the same given area
S. that of smallest perimeter is the square.

956. Prove that the sum of the legs of a right triangle never
exceeds 1 2 times the hypotenuse of the triangle.

957. Prove that for every acute angle «
tana + cota = 2.

958. Prove that if @ + b =1, where a and b are positive numbers,

then
1N (p 4 LYo 25
(a+?>+(b' b); 2

Determine for what values of ¢ and b the equality holds.

259. Prove, given any three positive numbers a, b, and ¢, the fol-
lowing inequality holds:

(@ + bYb + ¢)c + a) = 8abc .
Show that the equality holds only for a = b = c.

260. For what values of x does the following fraction have the
least value?

a + bx*

= (a and b positive).

261. A butcher has an inaccurate balance scale (its beams are of
unequal length). Knowing that it is inaccurate, and being an honest
merchant, he weighs his meat as follows. He takes half of it and
Places it on one pan, and he places the weights on the other pan,
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then he weighs the other half of the meat by reversing this prc ,;
cedure, that is, by removing the weights and placing the meat onj
that pan. Thus, the butcher believes he is giving honest Welght
Is his assumption correct? |

262. (a) Prove that the geometric mean of two positive numbers
is equal to the geometric mean of their arithmetic and harmom
means. .h

(b) Prove that the harmonic mean of two positive numberg
a and b does not exceed the geometric mean, and that the equalit
holds only if a = b. -

263.* Prove that the arithmetic mean of three positive numbe
is not less than their geometric mean, that is, ]

at+b+c
3

and that the equality holds only if a = b = c.

= Vabc,

264. Prove that, of all triangles with the same given perlmeter
the greatest area is enclosed by the equilateral triangle.

265. Given a three-faced pyramid having a right trihedral angl |
at the vertex. Designate the edges from the vertex by x,y, and z
For what x,y, and z is the volume of the pyramid a maximum ;;_-
it is known that

x+y+z=a’

266. Given six positive numbers a,, as, as, by, by, bs.  Prove that thq

following inequality holds:

‘%/(al + by)(as, + b2)as + bs) = Valaeaa + f/blbzba .

267. A Special Case of the Theorem Concerning the Arithmetic and
Geometric Means. Given 2™ positive numbers a,, a;, ', azn. Prov'
the_ inequality 4

. - . N
. _..f"" -, :_:'u BT
. =) e ra .
et d Ar-ms = ) ol ek
R s e il .t . e

I—'ﬁm’ é Aam(a) ’

that 1s,
2mmé , +a2 +m"' +dzm ’
2
and that the equality holds only if all the numbers a,,a;, -, a;m a
equal. 3

268.% Theorem of the Arithmetic and Geometric Means for n Nu
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Prove that for any # positive numbeérs a,, @, *- -, @x
rﬂ(a) é Aﬂ(d) »

bers.

that 1S,
_f3_1_+32+ v +aﬂ;

Vaas - a, < — ,

.nd that the equality holds only if @, =a: = -+ = a..

269. (a) Consider all sets of »n positive numbers whose sum 1s a
given number k. Prove that the maximum product of the numbers
of any such set is attained when all the numbers are equal.

(b) Given »n positive numbers a,, a;, -+, a.. Prove that

270. Prove that for »n positive numbers a,, a., - -+, a, the following

inequality holds,
Ha £ I'a),

that 1s,
n
T' 1 T < r:/ a.,aq y
(—- I S -—)
i, a; /2
and that the equality is obtained only if @, = a;, = -+ = @a.

271. Prove that for two positive numbers a and b

n <

and that equality can hold only if a = b.

272. Prove that for any set of positive numbers a;, @z, <+ -, @n

(ai'l"az"]‘"'+an)(—l—+-1—-+...+_l_);nz'

ay s a
When does the equality hold?

273. Prove that for any integer n > 1

, n—l—l)‘“
< (2

'274. Prove that the following inequality holds for any four posi-
tive numbers as, ., A3z, Qy.
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alaﬁaga: < (EL+ 2‘1_2 + 3511_-_{_—_1&)10

10
275. Prove the following.

1 1 1 1 % fn(n41))/2 ‘
(a) 1 -—¢—.— ... < [n n 1] .

2 3 44 n®
2n + 1 [nin+41)]/2
ol

([al means “the largest integer in ¢”).
276. Let a,, a.,

(b) 1-22-33-44---m<[

-+ +, @, be positive numbers, and let

S=a,+ a; + --- a, .
Prove that
2 3 ]
Q4+a)l+a)Q+a)Sl+s+ o p b oo
2! 3! nl

277. Prove that for every integer =
V2 ¥4 ¥8 - Y2r<sn+1.
278. For which value of x is the product
(1 — 21 + 2)(1 + 2x)7

a maximum, and what is this value?

of the circle the rectangle of greatest area.

280. From a square piece of cardboard measuring 2« on each sid

Figure 4

Inequalitiey

.J. .I.l
13

-
. q

L
1.
vh
" 1R

i

i *'

. T
.':1..
){ El
i

'-.‘.: )

.-:l__ b.'
..-I ,
i.:l:I :I

279.* Inscribe between a given segment of a circle and the arc}

B
L,

|I' .......

NI T E - -

o

e A e T o e e e e o R e
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a1 boX with no top is to be formed by cutting out from each corner
, square with sides b and bending up the flaps, as shown in Figure
4. For what value of b will the box contain the greatest volume?

Two Generalizations of the Theorem Concerning
Arithmetic and Geometric Means

The power mean of order a of n positive numbers a,,az, +++,an 1S defined
to be the number

Sala) =

(af‘+a;*+ +a:)w_
n }

in particular, if « = k is a whole number, we obtain

k k k - s k
Sk(ﬂ:) — ]/(Il +£12 +n +afﬂ .

[t is easy to see that Si(a) = A(a) and S_,(a) = H{a).

If «a = 0, the expression for S, is meaningless. On the other hand, it can
be proved that if a - 0, then Sz(a) tends to the geometric mean I'(a).t There-
fore, it is convenient to define Sy(a) = I'(a). (An additional justification for
this definition is given in problem 282.) The power mean of order 2 is referred
to as the quadratic mean.

Inequality (1’) (see the remark at the beginning of this section) can now be

stated as follows: The arithmetic mean of two numbers does not exceed their
quadratic mean (and the equality holds only if the numbers are equal).

281.* (a) Prove that the arithmetic mean of » positive numbers
does not exceed the quadratic mean:

2 2 2
a, aq "'+dn_)2< a,+ ay + -+ + Qn
n — n

The equality holds only if the numbers are all equal.

(b) Let 2 be any integer greater than 1. Prove that the
arithmetic mean of » positive numbers does not exceed their power
mean of order k:

(dl+a2+ * e +an)k
n

k k
a’;c""ag‘i‘""l‘an
n

=

The equality holds only if all the numbers are equal.

I That is,

& & . % \1/o I
a . ou +a n
lim(al 18y ¥ “) = A/ q1az2 - *Un -

-0 f {2

See V. E. Levine, “Elementary proof of one theorem of the theory of means,
Math. Educa., Issue 3, pp. 177-181, Moscow, 1958.
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282. Prove that the power mean of order a of n positive numbersf
for & > 0, is not less than the geometric mean, and, for a < 0, 14 :E

not greater than the geometric mean (equality holds only if all
numbers are equal.)

Remark: The theorems of problems 268 and 270 are particular cases of th: }'__

proposition.

283.% Theorem of Power Means. Prove that if a < 8, then the a;_
power mean of order a does not exceed the power mean of order B

(al +Ja2 -+ a“‘")”“ (czl + as + «- + a:n)
n

A

7
The equality holds only if ¢, =a, = -+ = a,.
284, (a) The sum of three positive numbers is equal to 6.
1s the smallest value which the sum of their squares can have.
What 1s the smallest value which the sum of their cubes can
(b) The sum of the squares of three positive numbers 1

equal to 18. What is the smallest possible value for the sum of

cubes of these numbers? What is the smallest possible value
the sum of these numbers?

The symmetric mean of order k of n positive numbers a, as, - - -, a, (wheré;_ 1
k is a natural number not exceeding n) is defined to be the kth root of '.535.- |
sum of all possible products of these n numbers taken %k at a time-

k
aQ1qz2- Qg + Q102" - Qg —1Qp+1 + + -
2x(a) = ]/ oL
i

It 1s clear that > i(a) = A(a), Dula) = I'a).
285. Prove that

+ Qn—k+1Qn—k+2°* *An

(26)% 2 (Der ) (S )f 1,
286. Theorem of the Symmetric Mean.

2ia) = 2(a) .
The equality holds only if ¢, =a, = --- = q,,.

Prove that if 2 >/, then 3

287. Given that the sum of all six possible pairwise products of
four numbers is equal to 24. What is the smallest value p0381ble

for the sum of the four numbers? What is the greatest possible i
value for the product of the numbers?

288. Let @+ B+ v = 7.
(a) Find the smallest possible value for

pProblems (282-292) 69
tan%- -+ tan% -l-tan—;— .
(b) Find the largest possible value for
tan %- tan %~tan-§-— i

The Cauchy-Buniakowski Inequality

The following elementary inequality is readily verified:

ai1by + azb: = ’/;I—E + aﬁ'/bf + b3

or,
(a1b1 + asb2)? = (af + ag)(bf + bg) : (1)
Expanding both sides and collecting all terms on one side we obtain
(@1bs — a201)2 = 0 .

It follows that inequality (1) becomes an equality if

a1b: = azb ,
that is, if

a1 a2

b be

Inequality (1) vields a significant generalization which is important in in-
equality theory and has useful applications in mathematics and physics.ft

289. The Cauchy-Buniakowsk: Inequality. Prove that for any 2n

real numbers a,, a., -+, a, and by, b,, ---, b, the following inequality
holds:

(@b, + ashy + - +ab )< (@ +at+ - +A)B+ b+ - + b

The equality holds only if

&1 az an

=T T

290. Use the Cauchy-Buniakowski inequality to derive the results
of problem 272.

291. Use the Cauchy-Buniakowski inequality to obtain the theorem
of problem 281 (a).

292, Prove that if @« + 8 + y = I, then

T This inequality is sometimes referred to, in other texts, as the Cauchy-
Schwarz inequality [Editor].
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B

tan? i;— + tan® - + tan’ -;i- >1. [

293. Prove for any positive numbers xi, Xz, =+, Xn; Y1, V2, * ¢ ¢, Voo

¢« + (Xn + Yn)?
A+ Vi i+
294, Let @ be the sum of all the possible pairwise products of theg

n positive numbers a;, a., --+, a,, and let P be the sum of thelr
squares. Prove that -

V(xl + vy 4+ (x + J’—D—z *i-
<VeZ+2+ -

n— 1
Q= 9 P. 18

295. Prove that, given 2n positive numbers p, ps, *- -, Pu; i,
., Xa, the following inequality holds:

(plxl + PeXxe + 00 pnxn)2 o
S (Pt bt o+ P pix + Poxs + - DaXn) .

296. Verify that for any three arbitrary numbers x,, x., x; the fol -
lowing inequality holds:
1 1 2 ‘

(—:12-1: 1 T '3—.%2 | 6 X 3) < -—%—x f | ; .1'5.2- + -é—xi . i

L L i1
yii.

297. Prove that if xi, Xz, - -, Xn; Y1, Y2, =+, ¥a are positive numbers, @
then }
Vay+ Vays+ o+ Viayn -

= 'l/x1 + Xg + 0+ Xp - 1/3’1 + ¥y + __—'l_:-}: 4,
298. Let ai, az, -+, an b1,by <o+, by, C1,Cq, v+, Cu; di,ds, + -, dyn
four sequences of positive numbers. Prove the inequality -':iff'
(alblcldl + azbzczdﬁ + ) + a'ﬂb‘ﬂ.cﬂ.‘di"l)‘i '
<(ai+a+as+ - + an)b + by + bz + - ba) ﬁ'

X (c1+cy+cs+ -+ +ca)d + di + di + +d:..)

299.* The Cauchy-Buniakowski inequality (problem 289) verlﬁes
that the relationship

(@, + as+ -+ + a)(bi + by + -+ + bL)
(@ by + aby + <+« + QnbW)*

an; by, be, -+, by are two sequences of positive num- ‘3%

where a,, a,, -,

Probfé’ms (293‘“30 1) 71

hers, 1s greater than or equal to 1 (and is equal to 1 only if _E;. _
i

a: _ ... = 'Z“). Prove that this value is always included between
be no
1 and the quantity
1 4 ('l/M1M2fm1m2 V%m_g/Mle )2
2

— ( V' M, M,[m.m; + 'l_/mimszlM; ): ]
2 ¥

where M, and m, are, respectively, the greatest and the least of the
numbers ai, @, - -+, a», and M, and m, are, respectively, the greatest
and least of the numbers by, b;, -, b.. In which case does the value
exactly equal the following?’

1 + ( 1/M1M2/m1m2

V mlfnsz1m )2
5 .

Some Additional Inequalities

300. Chebycheff’s Inequality. Let a,, as, -+, a, and by, b,, «- -, bs be
two nonincreasing sequences of numbers. The following inequality

holds:
ﬁ;+ﬂ2_+"‘+an bi*“ b2+"'+bn < albgiagbz‘l‘_'_‘;‘l‘dﬂbi

T -

— '

77! " n
= a, and b, = b, = -+ = b,.

Remark: It is possible to show that if ai, a2 ---,a» 1S a nonincreasing
sequence of numbers, and if by, be, - - -, by is nondecreasing, then

a + az + - +ﬂ_1;_.___bl+b2_i“""t'bnd
n n B n

the equality holding only if a;, =a, = ---

. aiby + azbe SR = anén

—

The proof of this proposition is left to the reader.

301. Let p and g be positive rational numbers for which

1 1
— 4+ —=1.
p q

Prove that for any positive numbers x and y the following inequality
holds:

Xy = -pr + %y“ :
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Remark: For p = q = 2 we obtain the Elementary Theorem of the Arithmetic

and Geometric Means.

302. Let « and P be positive rational numbers, where & + 8 =1,
Prove that for any positive numbers a,, @, : -, @x; b, by, + -+, ba the ]

following inequality holds:

atb? +aib; + - +abn (@t a+ o+ an) b+ b4 -+ bR

Remark: If a =8 =3, it is readily seen that we obtain the inequality of

problem 297, which is equivalent to the Cauchy-Buniakowski inequality.

303. Holder's Inequality. Let p and g be positive rational numbers

such that

1,1
— +—=1.
p 4

Prove that for any positive numbers x,, X, ***, Xx) Vi, V2, ***, Va the

following inequality holds:

X1 Y1+ X2Y2 + 00+ XnYa
SOl 20+ o MY+ yi 4 e+ Yy

Remark: If p = q = 2, this inequality becomes that of Cauchy—Buniakowski

(problem 289), which, in turn, is a special case of Holder's inequality.

3041 LEt al, as, **°, an; bl: b2! Tty b‘l‘l; te '; lll 12! IR [It be k Sequences

of positive numbers, and «, 3, - -, 4 be & positive number such that

@&+ B+ - +AiA=1,
Prove that

a’b.- I} 4 ashs- Iy + -+« + awbi- -1y

é(al"'aﬂ‘i' e +an)ﬂ(b1+b2+ v +bn)‘a"'(11+[2+ e —t—[“)“"‘m1~

305. Let a,a., ---,as. be n positive numbers, and let g be their

geometric mean (¢ = ¥a.a,---a,). Prove that

1+a)l+as)--A+a)=0+9)".

306. Prove that if a,,as, - -, an; bi,0s, <+ -, b4, -++; {1, by, » -+, I, are

k sequences of positive numbers, then the following holds:
Vaar - -an + ¥0ibae - bn + -+ + Vb1,
< ¥ +b+ -+ )a: + b
307. Let x,y, and z be positive numbers for which
x+y+z=1.

e + [2)(an -4 bu. + s 4+ [H) ‘ |
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(1+—};—)(1+}1—)(1+-1—);64.

308. Minkowski's Inequality. Let a,,a,, ---, Qn; 01, by + <, ba; +-+;
I, I, -+, Ia, be k sequences of positive numbers. Prove that

Prove that

Et+a+ - +a+Ve+b+ - + b
+ o+ VE+ L+ - + L

s V@ Tttt @t bt F Pt (Gn ¥ bt T L

Remark: The inequality of problem 308 [a generalization of the result of
problem 186 (a)] can also be written in the form

Sela) + Sa®)+ -+ + S(H)Z2Sla+ 0+ -+ + 1),

where S: is the quadratic mean of n numbers (see p. 67).
A more general formulation of Minkowski’s inequality is as follows. If
a1 @z, @ Dbz, oo, bny o Uy, L2, o+ -, In, are k sequences of positive numbers,

then

= Sala +b+ -+ +1) if a>1:

< Sala+b+ - + 1) if a <1.

In particular, the inequality of problem 306, which may be written
re)+rd+---+rrysl@a+d+--- +1)

Su(@) + Se(b) + -+ + Sz(l){

or
Sela) + Sob) + -+« 4+ So(l) £ Sola + b+ -+ + 1)
is a special case of Minkowski's inequality for a = O



DIFFERENCE SEQUENCES AND SUMS

Consider the sequence of numbers
o, ulr Uz, ***, Un, *

The first difference sequence of this sequence is the set of numbers
1 _

U1 — o ,

Uz — UL ,

a—
[
et

[ L .
»

Uy = Untr — Un , -

The second difference sequence is the difference sequence of the previous g

sequence:

2 1 1) .
) = ult —uft

(1) 1) .
Uy = Uy _'“'1“1

() __ ., (1) 1) .
Uy = Uz — Uy

Eha 5
[
Tt

(1} ., {1
u’n _un+1 u-n .

. k)
Analogously, the sequence of differences of kth order, ul®, u(®, ul®, - -, Up »

i1s the sequence obtained by working on the (k£ — 1)st sequence of differences,
udV, wlk=P k=3 ... For example, if the initial sequence of numbers is
the arithmetic progression 1,5,9,13,17, ..., then the first row of differences

consists of the numbers 4,4,4,4, ---, and the differences of second order form
74

i)

- - - . - " .o .. ERE - - J= ek . - . - . . '
: H . T ) . P - - e = P P e =L - . . . -t . . . . . . . .
Tl R S RS e T e e T Tl T T e i e i et e g o T e S pn D an TR e L emoeto e L et e ; St - .
=) = H - =] o m, - o o . I I S R e R T - " AT oLy e o etk e T homas e e - e e = - .,
—a T—— R T A= = e L T e St e S b, 47 o T s . e A ok .|. ] a g T =, e == s kL T e T o e
__ - [ E . —_ N el 2 B R =L - - i e iy, P, Ty oo Tl T

L agw s

T
ERT TR S, a2
P Mrr e o =
= PR i lar T

It

il
L , ;
- O ] = .3 - - iy . 3 o
R A AN i e i i e L P

=
e N

o
R e
e M =

I._.__ ;

Problems 75

. sequence of zeros: 0,0,0,0,-.-. If the initial sequence is the set of squares
of integers, 1,4, 9,16, 25, 36, 49, - . -, then the differences of first order form the
sequence of odd numbers: 3,5,7,9,11,13, ---; the differences of second order
form the sequence 2,2,2,2,.-., and the third sequence (differences of third
order) consists of zeros. [In the examples investigated we quickly arrived at
a sequence of zeros, and this is related to the general proposition of 309 (b).]

The sequences of differences of a finite sequence of numbers can be con-
veniently written in {riangular array:

uo ul uz T Y un
(1) (1) {1) (1}
Uy U, Uy Uy -y
(2) {2) (2)
Uy U, *Up_ o
(n)
Ug

Here it is apparent that each number is the difference of the two adjacent
numbers of the row above. For an infinite sequence of numbers the triangular
(infinite) array has the form

Uo w1 [/ %2 Un
{1; (1) (1) (1)
u) U, U, U,
u[(}ﬂ} u}'{ﬂ) uéﬁ) ui‘ﬁl

In a fashion analogous to finding the successive sequences of differences of
a set of numbers we can also define sequences of sums. The sequence of
sums of first order of the set of numbers uo, w1, %2, -+, Un, - -, which we shall

designate by writing &', &V, &V, ..., alV, ..., is defined by

zié”:uu+u1;
" = wur + ug ;
LR Y T R R ;

-1 .
u:l}:uﬂ_l_uﬂ“l‘lj
o

The sequence of sums of kth order of the numbers uo, uy, - - is ob-
tained from the (k — 1)st row of such sums. We shall designate the sums of
kth order by a{¥,a®, ..., al%, .

For example, if the initial set is the sequence of ones, 1,1,1,1, :---, then
the sequence of sums of first order consists of two’s: 2,2,2,2, ---; the sequence
of sums of second order is 4,4,4,4, -..; the third sequence is 8,8,8,8, ---;
and so on. If the initial set is the sequence of natural numbers, 1,2, 3,4,5,

-, then each sequence of sums will form an arithmetic progression:

i,un’llt
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3, S5, 7, 9, 11, 13,
8, 12, 16, 20, 24,
20, 28, 36, 44, cou
and so on.

Sequences of successive sums of a finite set uo, %1, - - -, Un can be conveniently §
displayed in triangular array:

wUo U1 U2 Un-—1 Un
-{1) -(1} -{1) - (1}
iy U, Ug Upy—1
-({2) - {2} - {2)
Uy Z Uy o
~(n—1) = (n—1) B

Here, each number is the sum of the two adjacent numbers in the row above.'_;f
If we consider an infinite sequence of numbers o, %1, #2, * -+, #n, then the tri-
angular array continues indefinitely.

We now consider a related concept, Pascal's Triangle (or the Arithmetic%

¥

llllllllllllllllllllllllllllllllll

Triangle): b
1

1

1 2 1

1 3 3 1

1 4 6 4 1

Here, the rows are bordered on each end by ones, and the interior integers are i
obtained as the sum of the two adjacent numbers of the previous row.

For convenience we shall start the row enumeration of the Pascal triangle f‘_
with the number zero; that is, the number one at the apex of the triangle will
be thought of as the Oth row; the sequence 1, 1 constitutes the first row, and
so on. We shall designate the (k + 1)st element of the nth row as C’f; (that-f

y
:

is, in each row, too, we shall start counting from zero). Using this terminology, i

we have the following format for Pascal’s triangle:

...................................

A number of properties of the members in the Pascal triangle have been

Problems (309-314) 77

Jeveloped in the book by B. B. Dynkin and V. A. Uspensky, Mathematical
Conversations, Issue 6, Section 2, Chapter III, Library of the Mathematical
Gociety. The material contained in the problems of this section are closely
related to the material in the interesting popular book by A. E. Markuskevich,
Reflexive Series, Government Technical Publishing House, Moscow, 1950.

The sequence of numbers obtained by successively substituting, for z in a
polynomial P(x) = aox®* + axx*~t + -+ + ax-12 + ar the sequence of integers
1,2,3, -, n [that 18, the sequence P(1), P(2), ---, P(n)] will be called the kth
order sequence of P(x). A special case of a kth order sequence is the sequence
1k, 2k, 3k, 4k, ... mk, ... [that is, P(x) = x*].

309. Let uo, 4y, us, ---,u, be a sequence of kth order; that is, let
Un = aon” anFt 4+ ... as.
(a) Prove that «. forms a sequence of (2 — 1)st order.
(b) Prove that the (k£ + 1)st difference sequence of this se-
quence consists only of zeros.

310. Prove that if u, = aw* + an** + ... + @*, then all the num-
bers of the kth row of the difference sequences u,, u;, us, -+, tn, - - -
are equal to a.k!.

311. Prove that:

(a) ﬁ*:tk} — Cgun + C;:un+1 + Cgun+2 4+ e + Cigun-}-k;
(b) " = (—1*Clutw + (— 1 'Chittn+,
-+ (_“]-)k_zcguﬂ+2 o R Cg”n+k-

312. Prove that

nin—1)n—2)---m—~k+1)

k __
Cn = k!

(& > 0),

where b! = 1.:2-3.. .k,
313. Prove that
u, = Costo + Coted” + Cieel? + -+ + ChulP

314. Assume that the (k& + 1)st row of successive differences [dif-
ferences of (k + 1)st order] of some seqnence consists of zeros, but
that the kth row consists of nonzero numbers. Prove that this
S€quence is a sequence of order k.

Remark: The theorem represented by this problem is the converse of the
theorem of problem 309 (b). There we were to prove that the (k 4+ 1)st row
Of the differences of a kth order sequence consists of zeros. Here we are to
Prove that if the (k + 1)st differences of some sequence consists of zeros, then
the sequence is of kth order.
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315. Find the formula giving the sum of the series
1+ 4+ 244+ 34+ -+ + nt.

316. (a) Prove that the sum 1* 4 2* + 3k 4 .o 4+ 0k 1s a
nomial in n of degree & + 1.
(b) Calculate the coefficients of »**' and of n* of this poly

nomial. H

317. We say that a sequence of integers i1s divisible by a numbetd
d if every number of this sequence is divisible by d. {For example,
the sequence of numbers n'* — n 1s divisible by 13; the sequence of:
numbers 36" — 2¢* is divisible by 35; the sequence of numbers S {
5n® + 4n is divisible by 120. See problems 27 (d), 28 (a) (b)].

Let u, be a kth order sequence u, = ank + an* + - + a, where
the coefficients a,, a, as, - - -, a* are relatively prime 1ntegers

that if the sequence %, 1S d1v151ble by an integer d, then d 1s a lelSOI* '
of &!. g
318. Calculate (C3)? + (CL)! + (C3} + -+« + (Ca). ‘ﬁ

319. Using the result of problem 313, prove Newton’s bmomlal
formula:

k(k—1)--

(a + b = a* + ka*'b + _}i%.i__l_)-ak—zbz .+ - bk
320. Consider the sequence 1, o3 Ty Construct the
successive-difference triangle:
, 1 1 1 1 1
2 3 4 5 6

1 1 1
4 20 60
1 1
5 30

1
6

Turn this triangle 60° clockwise such that the apex consists of the--_;
number 1:

e 1'.-

Problems (315-320) 79
1
211
2 2
1 1 1
3 0 3

......................................

Disregard the minus signs of this triangle, and divide through every
row by the number at the end of that row to obtain

1
1 ]
1
1 51
11
-
3 3 1
1 1 1
; L1 1
i 6 1 !
1 —]'- l _:L _1- 1

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Finally, substitute for each number its reciprocal (that is, replace
a/b by bla).

Prove that this end result gives Pascal’s triangle.
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