MATH 301
 INTRODUCTION TO DISCRETE MATHEMATICS (3)

Course Description: Symbolic logic, sets and relations, algorithms, mathematical induction, recurrence relations, trees and other graphs. Additional topics chosen from algebraic systems, networks, automata. Pre: One semester of calculus from mathematics department; or consent. Recommended: one semester programming.

Possible Texts:
K. Rosen, Discrete Mathematics and Its Applications, Random House.
R. P. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley. Lovasz, Pelikan, Vesztergombi, Discrete Mathematics and Beyond, Springer.

Topics:

(1) Fundamentals of Logic and Sets. Logic, Propositional Equivalences, Predicates and Quantifiers, Sets, Set Operations, Functions, Sequences.
(2) Algorithms. Algorithms, Complexity, Integer Algorithms, Matrices.
(3) Mathematical Reasoning. Proofs, Mathematical Induction, Recursive Definitions and Algorithms.
(4) Counting. Rules of Sum and Product, Pigeonhole Principle, Permutations, Combinations, Discrete Probability.
(5) Advanced Counting. Recurrence Relations, Divide-and-conquer Relations, Inclusion-Exclusion.
(6) Relation Algorithms. Relations, n-ary Relations, Representing Relations, Closures, Equivalence Relations, Partial Orders.
(7) Graphs. Graphs, Representing Graphs, Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest Paths, Planar Graphs, Graph Coloring.
(8) Trees. Trees, Applications, Tree Traversal, Trees and Sorting, Spanning Trees, Minimal Spanning Trees.
Student learning outcomes: Upon successful completion, the student will have a working knowledge of discrete mathematics. The student will be able to apply this to problems involving counting, inductive reasoning and analysis of algorithmic complexity.
Program objectives: Discrete mathematics provides a foundation for understanding advanced computer science. In particular the analysis of program correctness, termination and complexity.

