APPLIED MATH QUALIFYING EXAM APRIL 2018

Solve all six problems. You have 4 hours. Good luck!
 You need to demonstrate proficiency in each area

Problem 1: Consider the dynamics of a particle governed by the differential equation

$$
\ddot{x}+a \dot{x}\left(x^{2}+\dot{x}^{2}-1\right)+x=0
$$

with parameter $a>0$.
(1) Find and classify all the fixed points.
(2) Show that the system has a circular limit cycle, and find its amplitude and period.
(3) Determine the stability of the limit cycle.

Problem 2:

Let $\varphi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a flow. Recall that a closed invariant set $A \subset \mathbb{R}^{n}$ is called an attracting set for φ if there is a neighborhood $U \supset A$ such that $\forall t \geq 0, \varphi(t, U) \subset U$ and $\cap_{t>0} \phi(t, U)=A$. Now, consider a set K
 which is a union of a homoclinic orbit and a hyperbolic equilibrium point, as shown in the figure. Can K be an attracting set?

Problem 3: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a vector field, $G \subset \mathbb{R}^{2}$ an invariant open set. Show that if there is a function $B: \mathbb{R}^{2} \rightarrow \mathbb{R}, B(x)>0$ for $x \in G$, such that $\operatorname{div}(B(x) f(x))=0$ for $x \in G$, then there is a first integral for f in G, i.e. a function $H: G \rightarrow \mathbb{R}$ that is constant along the trajectories: $\dot{H}=\nabla H(x) \cdot f(x)=0, x \in G$.

Hint: Recall that a differential equation $P(x, y) d x+Q(x, y) d y=0$ is called exact if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, in which case there is a function $F(x, y)$ such that $\frac{\partial F}{\partial x}=P, \frac{\partial F}{\partial y}=Q$.

Problem 4: Recall that a discrete dynamical system $x \mapsto g(x), g$: $[a, b] \rightarrow[a, b]$, is called chaotic if
(1) g is transitive on $[a, b]$, i.e. for any two subintervals $U_{1}, U_{2} \subset$ $[a, b]$ there is $n>0$ such that $g^{n}\left(U_{1}\right) \cap g^{n}\left(U_{2}\right) \neq \emptyset$.
(2) g has sensitive dependence on the initial conditions, i.e. there is $c>0$ such that for all $x_{0} \in[a, b]$ and any interval $U \ni x_{0}$, there is $y_{0} \in U$ and $n>0$ such that $\left|g^{n}\left(x_{0}\right)-g^{n}\left(y_{0}\right)\right| \geq c$.
(3) Periodic points of g are dense in $[a, b]$.

Consider the tent map $g:[0,1] \rightarrow[0,1]$ given by

$$
g(x)=\left\{\begin{aligned}
2 x, & x \in\left[0, \frac{1}{2}\right] \\
2 x-1, & x \in\left(\frac{1}{2}, 1\right]
\end{aligned}\right.
$$

Prove that the dynamical system $x \mapsto g(x)$ is chaotic.
Hint: Find an explicit form of intervals which g^{n} maps onto $(0,1]$, show that the length of any such interval decreases to zero as $n \rightarrow \infty$ and deduce the properties needed for chaos.

Problem 5: The spherical mean of a function u is defined as

$$
U=\frac{1}{\alpha(n) n r^{n-1}} \int_{\partial B(x, r)} u d S(y)
$$

and satisfies

$$
\frac{\partial U}{\partial r}=\frac{1}{n \alpha(n) r^{n-1}} \int_{B(x, r)} \Delta u d y
$$

Here $\alpha(n)$ is the volume of an n dimensional sphere. You do not need to prove this second relation.
(1) Suppose that $u=u(x)$ is harmonic. Use the formula above to prove the mean value formula for Laplace's equation.
(2) Suppose instead that $u=u(x, t)$ is a solution of the wave equation

$$
u_{t t}=\Delta u
$$

show that

$$
\begin{equation*}
\left(r^{n-1} U_{r}\right)_{r}=\frac{1}{\alpha(n)} \int_{\partial B(x, r)} u_{t t} d S \tag{1}
\end{equation*}
$$

(3) Use equation (1) to derive a PDE for function $U(r, t)$.

Problem 6: Let A be an $n \times n$ matrix with integer entries, and assume that A is invertible.
(1) Prove that if A^{-1} has integer entries then $|\operatorname{det} A|=1$.
(2) Prove that if $|\operatorname{det} A|=1$ then A^{-1} has integer entries. Hint: Cramer's rule

