APPLIED MATH QUALIFYING EXAM APRIL 2018

Solve all six problems. You have 4 hours. Good luck! You need to demonstrate proficiency in each area

Problem 1: Consider the dynamics of a particle governed by the differential equation

$$\ddot{x} + a\dot{x}(x^2 + \dot{x}^2 - 1) + x = 0$$

with parameter a > 0.

- (1) Find and classify all the fixed points.
- (2) Show that the system has a circular limit cycle, and find its amplitude and period.
- (3) Determine the stability of the limit cycle.

Problem 2:

Let $\varphi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a flow. Recall that a closed invariant set $A \subset \mathbb{R}^n$ is called an attracting set for φ if there is a neighborhood $U \supset A$ such that $\forall t \ge 0, \varphi(t, U) \subset U$ and $\bigcap_{t>0} \phi(t, U) = A$. Now, consider a set Kwhich is a union of a homoclinic orbit and a hyperbolic equilibrium point, as shown in the figure. Can K be an attracting set?

Problem 3: Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field, $G \subset \mathbb{R}^2$ an invariant open set. Show that if there is a function $B : \mathbb{R}^2 \to \mathbb{R}$, B(x) > 0 for $x \in G$, such that $\operatorname{div}(B(x)f(x)) = 0$ for $x \in G$, then there is a first integral for f in G, i.e. a function $H : G \to \mathbb{R}$ that is constant along the trajectories: $\dot{H} = \nabla H(x) \cdot f(x) = 0$, $x \in G$.

Hint: Recall that a differential equation P(x, y)dx + Q(x, y)dy = 0is called exact if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, in which case there is a function F(x, y)such that $\frac{\partial F}{\partial x} = P$, $\frac{\partial F}{\partial y} = Q$. **Problem 4:** Recall that a discrete dynamical system $x \mapsto g(x), g : [a, b] \to [a, b]$, is called chaotic if

- (1) g is transitive on [a, b], i.e. for any two subintervals $U_1, U_2 \subset [a, b]$ there is n > 0 such that $g^n(U_1) \cap g^n(U_2) \neq \emptyset$.
- (2) g has sensitive dependence on the initial conditions, i.e. there is c > 0 such that for all $x_0 \in [a, b]$ and any interval $U \ni x_0$, there is $y_0 \in U$ and n > 0 such that $|g^n(x_0) g^n(y_0)| \ge c$.
- (3) Periodic points of q are dense in [a, b].

Consider the tent map $g: [0,1] \to [0,1]$ given by

$$g(x) = \begin{cases} 2x, & x \in \left[0, \frac{1}{2}\right] \\ 2x - 1, & x \in \left(\frac{1}{2}, 1\right] \end{cases}$$

Prove that the dynamical system $x \mapsto g(x)$ is chaotic.

Hint: Find an explicit form of intervals which g^n maps onto (0, 1], show that the length of any such interval decreases to zero as $n \to \infty$ and deduce the properties needed for chaos.

Problem 5: The spherical mean of a function u is defined as

$$U = \frac{1}{\alpha(n)nr^{n-1}} \int_{\partial B(x,r)} u dS(y),$$

and satisfies

$$\frac{\partial U}{\partial r} = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(x,r)} \Delta u dy.$$

Here $\alpha(n)$ is the volume of an *n* dimensional sphere. You do not need to prove this second relation.

- (1) Suppose that u = u(x) is harmonic. Use the formula above to prove the mean value formula for Laplace's equation.
- (2) Suppose instead that u = u(x, t) is a solution of the wave equation

$$u_{tt} = \Delta u$$

show that

(1)

$$(r^{n-1}U_r)_r = \frac{1}{\alpha(n)} \int_{\partial B(x,r)} u_{tt} dS.$$

(3) Use equation (1) to derive a PDE for function U(r, t).

Problem 6: Let A be an $n \times n$ matrix with integer entries, and assume that A is invertible.

- (1) Prove that if A^{-1} has integer entries then $|\det A| = 1$.
- (2) Prove that if $|\det A| = 1$ then A^{-1} has integer entries. *Hint:* Cramer's rule