APPLIED MATH QUALIFYING EXAM, JANUARY 2023

Solve all six problems. You have 4 hours. Good luck! You need to demonstrate proficiency in each area.

Problem 1. Consider the following planar system:

$$\dot{x} = y^3 - 4x$$

$$\dot{y} = y^3 - y - 3x$$

- (a) Find all equilibrium points and perform linear stability analysis.
- (b) Show that the line y = x is an invariant set.
- (c) Show that for any trajectory (x(t), y(t)) we have $|x(t) y(t)| \to 0$ as $t \to \infty$.

Problem 2. The following system for certain chemical reactions, developed by the Belgian scientists Prigogine and Lefever, is known as the Brusselator:

$$\dot{x} = a - (b+1)x + x^2y,$$

$$\dot{y} = bx - x^2y.$$

Here, x and y are the (non-negative) concentrations of the two chemicals, a and b are positive parameters. Does the Brusselator admit the possibility of Hopf bifurcation? Note: You'll need to keep one of the parameters fixed and see what happens when the other one varies.

Problem 3. Let $\varphi: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be the flow of a continuous dynamical system, and let $A \subset \mathbb{R}^n$ be an attracting set, i.e. A is a closed invariant set and there is a neighborhood $U \supset A$ such that $\forall t \geqslant 0$, $\varphi(t,U) \subset U$ and $\cap_{t>0} \varphi(t,U) = A$. Suppose that $\bar{x} \in A$ is a hyperbolic equilibrium point of a saddle-type, and let $W^s(\bar{x})$ and $W^u(\bar{x})$ denote the stable and unstable manifolds of \bar{x} . Must the following be true?

- (a) $W^{s}(\bar{x}) \subset A$
- $\text{(b) } W^{\mathfrak{u}}(\bar{x}) \subset A$

Justify your answer.

Problem 4. We shall need the following definition: given a discrete dynamical system $x \mapsto g(x)$, a point x is called *eventually periodic* if $\exists n \in \mathbb{N}$ such that the point $y = g^n(x)$ is periodic (in other words, $g^n(x) = g^{n+k}(x)$ for some positive integer k > 0). Now, consider the map $g : [0,1] \to [0,1]$ given by

$$g(x) = \begin{cases} 2x, & x \in \left[0, \frac{1}{2}\right] \\ c, & x \in \left(\frac{1}{2}, 1\right] \end{cases}$$

where $c \in (0, \frac{1}{2})$. Show that every point $x \in [0, 1]$ of the discrete dynamical system $x \mapsto$ g(x) is eventually periodic.

Problem 5. Let c and L be positive numbers, and let $u_0 \in C^{\infty}([0,L])$ be a nonnegative function that vanishes at x = 0 and x = L but is not identically zero. Suppose that u(x, t)is a smooth, nonnegative solution to the initial-value problem

$$\begin{split} u_t &= u_{xx} + c^2 u + u^2, & x \in (0,L), \, t > 0, \\ u(0,t) &= u(L,t) = 0, & t > 0, \\ u(x,0) &= u_0(x), & x \in [0,L]. \end{split}$$

Let $\phi(x) = \frac{\pi}{2L}\sin\left(\frac{\pi x}{L}\right)$ and $E(t) = \int_0^L u(x,t)\phi(x)\,dx$. Note that $\int_0^L \phi(x)\,dx = 1$.

- (a) Show that if $cL \geqslant \pi$, then $E'(t) \geqslant E(t)^2$ for all t. (Hint: As an intermediate step, apply the Cauchy-Schwarz inequality to $\int_0^L (u\sqrt{\varphi}) \sqrt{\varphi} \, dx$.) (b) Deduce that the solution u(x,t) does not exist beyond time t=1/E(0).

Problem 6. Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix, and let S be a k-dimensional subspace of \mathbb{C}^n . Let $\gamma \in \mathbb{C}$ and $\varepsilon > 0$ be given. Suppose that $||Ax - \gamma x||_2 < \varepsilon$ for every unit vector $x \in S$. Show that A has at least k eigenvalues (counting multiplicities) in a disk of radius ε centered at γ .