APPLIED MATH QUALIFYING EXAM, JANUARY 2023
Solve all six problems. You have 4 hours. Good luck! You need to demonstrate proficiency in each area.
Problem 1. Consider the following planar system:

$$
\begin{aligned}
& \dot{x}=y^{3}-4 x \\
& \dot{y}=y^{3}-y-3 x
\end{aligned}
$$

(a) Find all equilibrium points and perform linear stability analysis.
(b) Show that the line $y=x$ is an invariant set.
(c) Show that for any trajectory $(x(t), y(t))$ we have $|x(t)-y(t)| \rightarrow 0$ as $t \rightarrow \infty$.

Problem 2. The following system for certain chemical reactions, developed by the Belgian scientists Prigogine and Lefever, is known as the Brusselator:

$$
\begin{aligned}
& \dot{x}=a-(b+1) x+x^{2} y \\
& \dot{y}=b x-x^{2} y .
\end{aligned}
$$

Here, x and y are the (non-negative) concentrations of the two chemicals, a and b are positive parameters. Does the Brusselator admit the possibility of Hopf bifurcation?
Note: You'll need to keep one of the parameters fixed and see what happens when the other one varies.

Problem 3. Let $\varphi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the flow of a continuous dynamical system, and let $A \subset \mathbb{R}^{n}$ be an attracting set, i.e. A is a closed invariant set and there is a neighborhood $\mathrm{U} \supset A$ such that $\forall \mathrm{t} \geqslant 0, \varphi(\mathrm{t}, \mathrm{U}) \subset \mathrm{U}$ and $\cap_{\mathrm{t}>0} \varphi(\mathrm{t}, \mathrm{U})=A$. Suppose that $\overline{\mathrm{x}} \in \mathcal{A}$ is a hyperbolic equilibrium point of a saddle-type, and let $W^{s}(\bar{x})$ and $W^{u}(\bar{x})$ denote the stable and unstable manifolds of \bar{x}. Must the following be true?
(a) $W^{s}(\bar{x}) \subset A$
(b) $W^{u}(\bar{x}) \subset A$

Justify your answer.

Problem 4. We shall need the following definition: given a discrete dynamical system $x \mapsto$ $g(x)$, a point x is called eventually periodic if $\exists n \in \mathbb{N}$ such that the point $y=g^{n}(x)$ is periodic (in other words, $g^{n}(x)=g^{n+k}(x)$ for some positive integer $k>0$).
Now, consider the map $g:[0,1] \rightarrow[0,1]$ given by

$$
g(x)=\left\{\begin{array}{cl}
2 x, & x \in\left[0, \frac{1}{2}\right] \\
c, & x \in\left(\frac{1}{2}, 1\right] \\
1
\end{array}\right.
$$

where $c \in\left(0, \frac{1}{2}\right)$. Show that every point $x \in[0,1]$ of the discrete dynamical system $x \mapsto$ $g(x)$ is eventually periodic.

Problem 5. Let c and L be positive numbers, and let $u_{0} \in C^{\infty}([0, L])$ be a nonnegative function that vanishes at $x=0$ and $x=L$ but is not identically zero. Suppose that $u(x, t)$ is a smooth, nonnegative solution to the initial-value problem

$$
\begin{aligned}
u_{t} & =u_{x x}+c^{2} u+u^{2}, & & x \in(0, L), t>0, \\
u(0, t) & =u(L, t)=0, & & t>0, \\
u(x, 0) & =u_{0}(x), & & x \in[0, L] .
\end{aligned}
$$

Let $\phi(x)=\frac{\pi}{2 L} \sin \left(\frac{\pi x}{L}\right)$ and $E(t)=\int_{0}^{L} u(x, t) \phi(x) d x$. Note that $\int_{0}^{L} \phi(x) d x=1$.
(a) Show that if $c L \geqslant \pi$, then $E^{\prime}(t) \geqslant E(t)^{2}$ for all t. (Hint: As an intermediate step, apply the Cauchy-Schwarz inequality to $\int_{0}^{\mathrm{L}}(u \sqrt{\Phi}) \sqrt{\phi} d x$.)
(b) Deduce that the solution $u(x, t)$ does not exist beyond time $t=1 / E(0)$.

Problem 6. Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix, and let S be a k-dimensional subspace of \mathbb{C}^{n}. Let $\gamma \in \mathbb{C}$ and $\varepsilon>0$ be given. Suppose that $\|A x-\gamma x\|_{2}<\varepsilon$ for every unit vector $x \in S$. Show that A has at least k eigenvalues (counting multiplicities) in a disk of radius ε centered at γ.

