APPLIED MATH QUALIFYING EXAM, AUGUST 2020

Solve all six problems. You have 4 hours. You need to demonstrate proficiency in each area. Good luck!

Problem 1. Consider a general predator-prey system:

$$\dot{x} = xg(x) - yp(x)$$
$$\dot{y} = y(-d + q(x))$$

where d>0 and the functions g(x), p(x), q(x) are smooth for $x\geq 0$. Let K>0, and assume that

$$g(x) > 0$$
 for $x < K$, $g(x) < 0$ for $x > K$, and $g(K) = 0$.

Assume also that

$$p(0) = 0, p(x) > 0 \text{ for } x > 0,$$

and

$$q(0) = 0, \ q(K) > d, \ \frac{d}{dx}q(x) > 0 \text{ for } x > 0,$$

i.e. q(x) is monotonically increasing.

- (a) Show that x- and y-nullclines are given by the equations $y = \frac{xg(x)}{p(x)}$ and $x = \bar{x}$, respectively, where \bar{x} is the unique point such that $q(\bar{x}) = d$. Deduce that there is a single equilibrium point, $\mathbf{w} = (\bar{x}, \bar{y})$, in the interior of the first quadrant, with $\bar{y} = \frac{\bar{x}g(\bar{x})}{p(\bar{x})}$.
- (b) Show that **w** is locally asymptotically stable if and only if $\frac{d}{dx}\left(\frac{xg(x)}{p(x)}\right)$ is negative at $x=\bar{x}$.

 Hint: Recall that the product and the sum of the eigenvalues of the Jacobian at **w** are equal to the determinant and the trace, respectively. Then consider the signs of the determinant and the trace.

Problem 2. Consider the following predator-prey system:

$$\dot{x} = rx\left(1 - \frac{x}{K}\right) - y\frac{cx}{a+x}$$

$$\dot{y} = y\left(-d + \frac{bx}{a+x}\right)$$

where all parameters are positive with b > d and $K > \frac{ad}{b-d}$. Note that this system is a particular case of the system from Problem 1.

- (a) Use the results of Problem 1 (even if you haven't solved it) to show that there is a single equilibrium point $\mathbf{w} = (\bar{x}, \bar{y})$ with $\bar{x} = \frac{ad}{b-d}$ in the interior of the first quadrant, and that it is locally asymptotically stable if and only if $K < a + 2\bar{x}$.
- (b) Show that the system has a limit cycle if $K > a + 2\bar{x}$.

Problem 3. Consider the following planar system:

$$\dot{x} = (1+a^2)x + (2-6a)y + f(x,y)$$
$$\dot{y} = -x - 2y + g(x,y)$$

where a is a parameter. The functions f(x,y), g(x,y) are smooth and can be expanded into a Taylor series around the origin starting with quadratic terms (that is, the values of the functions and their first derivatives at the origin are all zero).

- (a) For which values of a is the origin locally asymptotically stable?
- (b) For which values of a is it possible to have a Hopf bifircation?

Problem 4. Recall that a homoclinic orbit of a discrete dynamical system $x \mapsto f(x)$ is a bi-inifinite sequence

$$\dots, x_{-2}, x_{-1}, x_0, x_1, x_2, \dots$$

such that $x_{n+1} = f(x_n), n \in \mathbb{Z}$, and

$$\lim_{n \to -\infty} x_n = \lim_{n \to \infty} x_n = p$$

for some p in the domain of f. It is known that presence of a homoclinic orbit implies chaos. Consider the system $x \mapsto f(x)$ for f(x) = 1 - 2|x|.

- (a) Find equilibrium points and perform linear stability analysis for each of them.
- (b) Show that the Lyapunov exponent is positive, which suggests chaos.
- (c) Show that this system has a homoclinic orbit, and hence is chaotic. Hint: Often, a homoclinic orbit can be constructed by "iterating back" an unstable equilibrium point. This gives the part of the orbit for $n \to -\infty$. The other part then becomes a constant sequence which simply repeats the unstable equilibrium point.

Problem 5. Suppose that a collection of particles with a unit total mass diffuse according to the equation

$$u_t = au_{xx}, \quad -\infty < x < \infty, t > 0,$$

where u(x,t) represents the density of the particles, a>0. Assume that all solutions and their derivatives are smooth with a faster than polynomial decay at infinity (i.e. $\lim_{x\to\pm\infty}|x|^mu(x,t)=0$ and $\lim_{x\to\pm\infty}|x|^mu_x(x,t)=0$ for any $m\geq 1$).

- (a) Given that $u(x,t) = \frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}$ is the fundamental solutions of the above diffusion equation for a=1, rescale time to find the fundamental solution for any a>0.
- (b) Suppose that the initial density profile is given by u(x,0) = f(x) for some function f(x) (again, assumed to be smooth and rapidly decaying at infinity). Show that the first moment of the density u(x,t) (which represents the expected position of a particle) is constant in t:

$$\int_{-\infty}^{\infty} su(s,t)ds = \int_{-\infty}^{\infty} sf(s)ds.$$

What is the value of the first moment if f(x) is even?

(c) Now consider the second moment (which represents the "average" spread of the particles around their expected position):

$$M_2(t) = \int_{-\infty}^{\infty} s^2 u(s, t) ds.$$

Show that $M_2(t) = 2at + M_2(0)$, where $M_2(0)$ is the second moment at time t = 0.

Problem 6. Let A be a symmetric $n \times n$ matrix with non-negative elements. Prove that for any nonzero $x \in \mathbb{R}^n$ with non-negative elements the following inequality holds:

$$\left(\frac{\langle x, Ax \rangle}{\langle x, x \rangle}\right)^m \le \frac{\langle x, A^m x \rangle}{\langle x, x \rangle}, \quad m \in \mathbb{Z}_+,$$

where $\langle \cdot, \cdot \rangle$ denotes the inner (dot) product.

Hint: Use induction.