APPLIED MATHEMATICS OUALIFYING EXAM, AUGUST 2021

Solve all six problems. You have 4 hours. Good luck! You need to demonstrate prociency in each area.

Problem 1. Consider the following system with a real parameter k:

$$\dot{x} = (k - \sqrt{x^2 + y^2})x + y$$
$$\dot{y} = -x + (k - \sqrt{x^2 + y^2})y$$

- (a) Show that origin is the only equilibrium point. Investigate and comment on the linear stability of this equilibrium point.
- (b) Use the Lyapunov function $V(x,y) = \frac{1}{2}(x^2 + y^2)$ to deduce that the origin is stable for $k \le 0$ and unstable if k > 0. Also find the value of k for which the origin is asymptotically stable.
- (c) The system can be transformed to the following polar form

$$\dot{\mathbf{r}} = (\mathbf{k} - \mathbf{r})\mathbf{r}$$

$$\dot{\mathbf{\theta}} = -1$$

Consider the transformed system with the initial condition $r(0) = r_0$ and $\theta(0) = 0$ to verify that the solution to the system is given by

$$r = \frac{k r_0}{r_0 + (k - r_0) \exp(-kt)}$$

$$\theta = -t$$

(d) Use the solution in (c) to prove that for k>0 we can define a Poincaré map $P:\mathbb{R}^+\to\mathbb{R}^+$ by

$$P(r) = \frac{kr}{r + (k - r) \exp(-2\pi k)}$$

(e) Use Poincaré map, or any other approach, to show that the limit cycle in (c) is stable.

Problem 2. A simple model of pigmentation on an animal body is given by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = s - rx + \frac{x^2}{1 + x^2},$$

where x(t) measures the concentration of a pigment on the body, $s \ge 0$ is a parameter that represents some biochemical signal that promotes the pigmentation, and r > 0 is another parameter that represents degradation of the pigment.

- (a) In the absence of the biochemical signal, i.e. s=0, show that, in addition to x=0, there are two positive equilibrium points if $r < r_c$, where r_c is to be determined by you.
- (b) Denoting the right hand side of the model by f(x,r,s), sketch the graph of f for s=0 and $r=r_0\in(0,r_c)$. Based on the sketch, describe (informally) how the equilibrium points change when $r=r_0$ and s is varied between 0 and ∞ , and when s=0 and r is varied between 0 and ∞ .
- (c) Show that for s>1 there is only one equilibrium point regardless of the value of r (you may need to consider the sign of $\frac{\partial f}{\partial x}$). Describe (informally) what happens if the system with s>1 is at the equilibrium, but then we set s=0 (note that this behavior depends on the value of r).
- (d) Recall that the bifurcation curves in (r, s) space are obtained by equating f and $\frac{\partial f}{\partial x}$ to zero. Find *parametric equations* for these curves (note that you may regard x as a parameter, or you may want to set $x = \tan \alpha$). Describe the bifucations that occur when r > 0 is fixed and s is varied between 0 and ∞ .

Problem 3. Recall that the Hartman Grobman Theorem says that, under certain assumptions, a nonlinear systems "looks alike" its linearization. More precisely, the statement of the theorem is as follows:

Consider a system $\dot{x} = f(x) \in \mathbb{R}^n$, with $f \in C^1(\mathbb{R}^n)$, and let $\phi_t(x)$ denote its flow. Assume that x^* be a hyperbolic equilibrium point. Then there exists a neighborhood N of x^* such that ϕ is topologically conjugate to the flow of the corresponding linearized system, $\dot{x} = Df(x^*)$.

This problem will test your knowledge of some concepts and ideas involved in the proof of the theorem.

- (a) Define what an hyperbolic equilibrium point is and sketch an example of a possible phase portraits around a non hyperbolic point.
- (b) Describe how the equivalence classes (under linear and hence topological conjugacy) for *planar linear systems* are determined by the corresponding eigenvalues as well as stables, unstable, and center spaces.
- (c) Give a formal definition of topological conjugacy, denoting the homeomorphism between the neighborhoods by H.
- (d) Restate the Hartman-Grobman theorem using the formal definition of topologically conjugacy. In your statement, use A to denote the linearization of f at x^* , i.e. $A = Df(x^*)$, and use $\psi_t(x) = e^{At}x$ to denote the flow of the linearized system.
- (e) The difficulty of the proof lies in the construction of the homeomorphism H. But suppose that H_1 is a unique homeorphism satisfying

$$H_1(x) = (\psi_{-1} \circ H_1 \circ \varphi_1)(x) = e^{-A}(H_1 \circ \varphi_1)(x).$$

Show that the sought homeomorphism H is given by

$$H(x) = \int_0^1 (\psi_{-s} \circ H_1 \circ \varphi_s)(x) ds.$$

You do not need to construct $H_1(x)$.

Problem 4. Let us consider the following difference equation:

$$y_{n+1} = F(y_n) = 3y_n - 6\gamma y_n + 2\gamma y_n^2,$$

where $\gamma > 0$ is the bifurcation parameter.

- (a) Perform linear stability analysis of the fixed points for all values of γ .
- (b) State the general equation which determines the existence of a k-cycle, then show that the existence of a 2-cycle is related to the solutions of the following equation:

$$4\gamma^2y^2 + (8\gamma - 12\gamma^2)y + 4 - 6\gamma = 0.$$

Use the above equation to justify that the existence of a 2-cycle requires $\gamma \geqslant \frac{2}{3}$.

(c) Show that the 2-cycle is stable for $\frac{2}{3} \leqslant \gamma \leqslant \frac{1}{6}(2+\sqrt{6})$.

Problem 5. Suppose that u is a smooth solution of the initial-value problem

(1)
$$\frac{\partial u}{\partial t} - a\Delta u + b|\nabla u|^2 = 0, \quad \text{in} \quad \mathbb{R}^n \times (0, \infty),$$

(2)
$$u = g, \qquad \text{on } \mathbb{R}^n \times \{0\},$$

where a > 0, $b \in \mathbb{R}$, and $g : \mathbb{R}^n \to \mathbb{R}$ is given.

(a) Show that if $\phi : \mathbb{R} \to \mathbb{R}$ is a smooth function satisfying

$$a\phi'' + b\phi' = 0$$
,

then the function $w = \phi(u)$ satisfies

$$\frac{\partial w}{\partial t} - a\Delta w = 0, \qquad \text{in} \quad \mathbb{R}^n \times (0, \infty),$$

$$w = \phi(g), \qquad \text{on} \quad \mathbb{R}^n \times \{0\}.$$

(b) Use part (a) to find an explicit formula for the solution to (1-2) in terms the heat kernel $\frac{1}{(4\pi t)^{\pi/2}}e^{-|x|^2/(4t)}.$

Problem 6. Let $m, n \in \mathbb{N}$ and $A, B \in \mathbb{R}^{m \times n}$ with rank B = 1. Show that

$$\operatorname{rank}(A-B)=\operatorname{rank}A-1$$

if and only if there exist vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ such that $y^TAx \neq 0$ and

$$B = \frac{Axy^TA}{y^TAx}.$$