APPLIED MATH QUALIFYING EXAM JANUARY 2019

Solve all six problems. You have 4 hours. Good luck!
You need to demonstrate prociency in each area

Problem 1. Recall the Lorenz system

$$
\begin{aligned}
\dot{x} & =\sigma(y-x), \\
\dot{y} & ==r x-y-x z, \\
\dot{z} & =x y-b z,
\end{aligned}
$$

where r, σ, b are positive constants. For $0<r<1$, show that the origin is globally asymptotically stable by considering a function $V_{1}=\alpha x^{2}+\beta y^{2}+\gamma z^{2}$, for a suitable choice of constants α, β, γ. For $r \geq 1$, show by considering the function $V_{2}=r x^{2}+$ $\sigma y^{2}+\sigma(z-2 r)^{2}$ that all trajectories eventually enter and then remain within a bounded region of phase space.

Problem 2. Consider the dynamical system in polar coordinates

$$
\begin{aligned}
\dot{r} & =r\left(\mu+2 r^{2}-r^{4}\right) \\
\dot{\theta} & =1-\nu r^{2} \cos \theta
\end{aligned}
$$

Find the conditions on the parameters μ and ν under which there are zero, one, and two periodic orbits. For $\nu=0$, deduce the stability of these orbits and show the results in the (μ, r) plane. For $\nu=1 / 2$, describe the types of bifurcations that occur as μ is varied.

Problem 3. The map $F(x, \mu)=1-\mu x^{2}$ has a superstable 3-cycle at a certain parameter value μ_{c}. Find a cubic equation for this μ_{c}.

Problem 4. Consider the 1-d map

$$
x_{n+1}=f\left(x_{n}\right)=x_{n}+a \cos \left(x_{n}\right) \sin \left(x_{n}\right)
$$

1. Find the fixed points x^{*} of the map above in the interval $[0 ; \pi[$.
2. Determine the derivative of the map.
3. For the fixed point x_{2}^{*} (where $x_{1}^{*}<x_{2}^{*}$) determine the value of a, denoted by a_{2}, where the fixed point undergoes period doubling.
4. For the other fixed point x_{1}^{*} a period doubling occurs at $a_{1}=-2$. Consider a small variation around x_{1}^{*}, i.e. $x_{1}^{*}=\varepsilon$ where $\varepsilon \ll 1$, and show that a two cycle for the map exists (for $a=a_{1}$ expand the map above around in x_{n}).

Problem 5. Consider the following heat problem on a rod of length L with source distribution $F(x, t)$ and initial condition $g(x)$

$$
\begin{gathered}
u_{t}=u_{x x}+F(x, t) \quad x \in(0, L), t>0 . \\
u(x, 0)=g(x), \quad x \in(0, L) .
\end{gathered}
$$

1. Suppose that the rod is insulated at $x=0$ and has a fixed temperature of 0 at $x=L$. Give the boundary conditions for this problem.
2. Suppose the rod contains a radioactive substance that is emitting heat at a constant rate $F(x, t)=C$. Give a formal solution with this source and the boundary conditions of (a).
3. Use the energy integral $E(t)=\int_{0}^{L} u^{2} d x$ to show that this solution is unique.

Problem 6. Suppose A and B are $n \times n$ matrices with real entries and that B has rank 1 . Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(t)=\operatorname{det}(A+t B)$ is a line (i.e, it has form $f(t)=m t+b)$.

