Problem 1. Consider the following system:
\[\dot{x} = y, \quad \dot{y} = y - x^3. \]
(a) Show that origin is a fixed point, and that linear stability analysis does not yield an answer regarding its stability.
(b) Use a Lyapunov function of the form
\[V(x, y) = ax^4 + bx^2 + cxy + dy^2 \]
to deduce that the origin is unstable.

Problem 2. Consider a planar system
\[\dot{x} = f(x), \quad x \in \mathbb{R}^2 \]
with flow \(\varphi(t, x) \). Recall that a trapping region for this system is a compact, connected set \(D \subset \mathbb{R}^2 \) such that \(\varphi(t, D) \subsetneq D \) for all \(t > 0 \) (where \(\subsetneq \) means proper subset).
Now, assume that \(D \subset \mathbb{R}^2 \) is a closed region whose boundary, \(\partial D \), is a simple, smooth closed curve that is not a periodic trajectory of the flow. For each \(x \in \partial D \) let \(n(x) \) denote the inward unit normal to \(\partial D \) at \(x \), and recall that \(\langle f(x), n(x) \rangle \) denotes the scalar product of the vectors \(f(x) \) and \(n(x) \).
(a) Show that the condition \(\langle f(x), n(x) \rangle > 0 \) for all \(x \in \partial D \) is sufficient for \(D \) to be a trapping region.
(b) Show that the condition \(\langle f(x), n(x) \rangle \geq 0 \) for all \(x \in \partial D \) is not sufficient for \(D \) to be a trapping region.

Problem 3. Consider the following planar system
\[\dot{x} = \mu x + y, \quad \dot{y} = -x - y^3. \]
(a) Show that the origin is a fixed point and perform its linear stability analysis for all values of \(\mu \).
(b) Show that the system has a stable limit cycle for \(\mu > 0 \). What kind of a bifurcation occurs at \(\mu = 0 \)?

Problem 4. Consider a planar diffeomorphism \(f(x, y) = (f_1(x), f_2(y)) \). Suppose that \(f_1(x) \) has a 2-cycle \(\{x_1^*, x_2^*\} \), and \(f_2(y) \) has a fixed point \(y^* \).
(a) Show that \(f \) has a 2-cycle \(\{(x_1^*, y^*), (x_2^*, y^*)\} \).
(b) If the 2-cycle of \(f_1(x) \) is asymptotically stable, how does the stability of \(y^* \) affect the stability of the 2-cycle in \(f \)?
Problem 5. Suppose that v is a nonzero column vector in \mathbb{C}^n ($n > 1$) and the matrix $A = \frac{vv^*}{v^*v}$, where v^* denotes the Hermitian conjugate of v.

(a) What are the eigenvalues of A? Explain.
(b) Is the matrix $I + A$ (I is the $n \times n$ identity matrix) diagonalizable? Explain.
(c) Find the determinant of $I + A$.
(d) What is A^{2020}? Explain.

Problem 6. Let $D \subset \mathbb{R}^3$ be a region with smooth boundary, ∂D. Show that the boundary value problem

$$\nabla^2 u - \lambda u = h(x), \quad x \in D,$$
$$\frac{\partial u}{\partial n} + ku = g(x), \quad x \in \partial D,$$

where the functions h and g are smooth, has a unique solution provided $k > 0$ and $\lambda > 0$. Does uniqueness still hold if one of k and λ is zero while the other is strictly positive? Comment on uniqueness when both $k = 0$ and $\lambda = 0$.