APPLIED MATH QUALIFYING EXAM, JANUARY 2020

Solve all six problems. You have 4 hours. Good luck! You need to demonstrate prociency in each area.

Problem 1. Consider the following system:

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=y-x^{3} .
\end{aligned}
$$

(a) Show that origin is a fixed point, and that linear stability analysis does not yield an answer regarding its stability.
(b) Use a Liapunov function of the form $V(x, y)=a x^{4}+b x^{2}+c x y+d y^{2}$ to deduce that the origin is unstable.

Problem 2. Consider a planar system

$$
\dot{x}=f(x), \quad x \in \mathbb{R}^{2}
$$

with flow $\varphi(t, x)$. Recall that a trapping region for this system is a compact, connected set $D \subset \mathbb{R}^{2}$ such that $\varphi(t, D) \subsetneq D$ for all $t>0$ (where \subsetneq means proper subset).
Now, assume that $D \subset \mathbb{R}^{2}$ is a closed region whose boundary, ∂D, is a simple, smooth closed curve that is not a periodic trajectory of the flow. For each $x \in \partial D$ let $n(x)$ denote the inward unit normal to ∂D at x, and recall that $\langle f(x), n(x)\rangle$ denotes the scalar product of the vectors $f(x)$ and $n(x)$.
(a) Show that the condition $\langle f(x), n(x)\rangle>0$ for all $x \in \partial D$ is sufficient for D to be a trapping region.
(b) Show that the condition $\langle f(x), n(x)\rangle \geq 0$ for all $x \in \partial D$ is not sufficient for D to be a trapping region.

Problem 3. Consider the following planar system

$$
\begin{aligned}
& \dot{x}=\mu x+y \\
& \dot{y}=-x-y^{3}
\end{aligned}
$$

(a) Show that the origin is a fixed point and perform its linear stability analysis for all values of μ.
(b) Show that the system has a stable limit cycle for $\mu>0$. What kind of a bifurcation occurs at $\mu=0$?

Problem 4. Consider a planar diffeomorphism $f(x, y)=\left(f_{1}(x), f_{2}(y)\right)$. Suppose that $f_{1}(x)$ has a 2 -cycle $\left\{x_{1}^{*}, x_{2}^{*}\right\}$, and $f_{2}(y)$ has a fixed point y^{*}.
(a) Show that f has a 2-cycle $\left\{\left(x_{1}^{*}, y^{*}\right),\left(x_{2}^{*}, y^{*}\right)\right\}$.
(b) If the 2-cycle of $f_{1}(x)$ is asymptotically stable, how does the stability of y^{*} affect the stability of the 2 -cycle in f ?

Problem 5. Suppose that v is a nonzero column vector in $\mathbb{C}^{n}(n>1)$ and the matrix $A=\frac{v v^{*}}{v^{*} v}$, where v^{*} denotes the Hermitian conjugate of v.
(a) What are the eigenvalues of A ? Explain.
(b) Is the matrix $I+A$ (I is the $n \times n$ identity matrix) diagonalizable? Explain.
(c) Find the determinant of $I+A$.
(d) What is A^{2020} ? Explain.

Problem 6. Let $D \subset \mathbb{R}^{3}$ be a region with smooth boundary, ∂D. Show that the boundary value problem

$$
\begin{aligned}
& \nabla^{2} u-\lambda u=h(x), \quad x \in D, \\
& \frac{\partial u}{\partial n}+k u=g(x), \quad x \in \partial D,
\end{aligned}
$$

where the functions h and g are smooth, has a unique solution provided $k>0$ and $\lambda>0$. Does uniqueness still hold if one of k and λ is zero while the other is strictly positive? Comment on uniqueness when both $k=0$ and $\lambda=0$.

