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1. History

In spite of its erudition and acumen, by today’s stan-
dards, there are many defects in Euclid’s axiomatic de-
velopment of geometry. Yet this was not a major preoc-
cupation until the 20th century. Instead, it was the Fifth
Postulate on parallels which captured the imagination of
the mathematical public. This axiom appeared too com-
plicated by comparison with the others and not an “ob-
vious truth”. Euclid himself nourished this impression
by putting off its use. Mathematicians tried to prove the
Parallel Axiom for hundreds of years. There were claims
of success but every time the proofs collapsed under close
scrutiny.
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Finally, it dawned on some people,

• Karl–Friedrich Gauss (1777–1855),
• Janos Bolyai (1802–1860), and
• Nikolai Ivanovich Lobachevski (1792–1856),

to be precise, that the Fifth Postulate could not be proved,
that one could postulate the existence of more than one
parallel to a line through a point, and “create a strange
new universe” (Letter of Janos Bolyai to his father Wolf-
gang Bolyai.) This was the discovery of Non–Euclidean
geometry and a breakthrough shattering many ingrained
philosophical and mathematical ideas.
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2. Axiomatic Mathematics

In ancient Greece philosophy and mathematics were
closely interwoven, and the Greek intellectuals questioned
one another and insisted on certainty and rigor. The
novel idea carried out by Euclid with astonishing elegance
and completeness was to begin with simple unquestioned
truths and derive logically other truths. Whoever would
accept the original truths or postulates, would have to
accept equally their logical consequences. It was clear
that any such theory would have to start somewhere with
postulates; otherwise an unending chain of questions and
answers would result and nothing would ever be sure.
Similarly, there must be simple basic objects in terms of
which other objects can be defined.
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In the Elements these are prominently the points and
lines, but Euclid’s definitions of point and line suggest
what to think of, what to visualize, but they are not
usable definitions since they involve other concepts that
are no less mysterious than the objects they purport to
explain. In fact, there is no explicit argument anywhere
in the Elements that uses the definitions of point and line.
In diagrams, of course, the points and lines are drawn as
suggested by the definitions. If a definition is not used,
then it must be superfluous and a theory can be developed
without it.
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A modern axiomatic theory begins with certain un-
defined terms and a number of axioms which are
statements involving these undefined terms and possibly
terms defined by means of the initial undefined terms.
The undefined terms are not known, all that is assumed
are the axioms. The axioms are not considered objective
truths, they may or may not be true when the undefined
concepts are interpreted in some way, but if they are
true in some interpretation or model, then all their log-
ical consequences will also be true. In a modern axiom
system for geometry an interpretation of point could be
the visual picture which Euclid tries to describe in his
definition, but it could also be a pair (x, y) of real num-
bers. What matters is whether the axioms become true
or not for these interpretations. The difficulty of the ax-
iomatic method is its abstractness, the fact that we
are not talking about concrete objects which we can vi-
sualize and become familiar with. The advantage of the
method rests in the fact that we obtain a body of truths
for any interpretation of the undefined terms for which
the axioms become true.
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3. Axioms for Geometry

A completely satisfactory system of axioms for Euclidean
geometry was established by David Hilbert (1862–1943)
in his booklet “Foundations of Geometry” which appeared
in 1898. The following system is a variant of Hilbert’s ax-
ioms.

Definition 3.1. Let E be a set whose elements are
called points and denoted by A,B,C, . . . Three points
A,B,C may or may not satisfy a relation ABC, read
as B is between A and C. This relationship among
points is called order relation.

For two distinct points A,B the set
←→
AB =

{X : X = A or X = B or XAB or AXB or ABX}
is called the straight line through A and B. The

set

AB = {X : AXB}
is called the line segment with endpoints A,B.
Any point X with AXB is also called an interior

point of AB, the points of
←→
AB not belonging to AB∪

{A,B} are exterior to AB. Straight lines are de-
noted by a, b, c, . . .
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Given the pointsA,B,C, there are six possible relations
which may be true or not: ABC, ACB, BAC, BCA,
CAB, CBA. We postulate the following.

3.2. Axioms of Order

I1. E contains three points A0, B0, C0 which are not
related by order.

I2. For any two (distinct) points A,B ∈ E, there is
C ∈ E such that ABC.

I3. If ABC then CBA.
I4. For three points A,B,C, at most one of the rela-

tions BAC, CBA, and ACB is true.
I5. If the points A,B,C are related by “between” and

the points A,B,D are related by “between”, then
the points B,C,D are related by “between”.

I6. (Pasch) Let A,B,C ∈ E be different points not
related by “between”. If ADB and E is a point of
←→
AC which lies outside AC, then

←→
DE ∩BC 6= ∅.
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Definition 3.3. Let O,A,B be three distinct points of
a line a. We say that A,B are on different sides
of O if AOB, otherwise we say that A,B are on the
same side of O. The half–ray with initial point
O through A is the set

−→
OA = {A} ∪ {X : OXA} ∪ {X : OAX}.

Definition 3.4. The triangle ∆ABC is the set of
the three points A,B,C provided these are not related
by “between”. The points A,B,C are the vertices
of the triangle, the line segments AB, BC, CA are
the sides of the triangle. The side AB is the side
opposite C, etc.

Definition 3.5. Let A,B,C form a triangle. The

plane
←→
ABC determined by A,B,C is the union of

all lines
←→
AD with D ∈ BC ∪ {B,C},

←→
BD with D ∈

CA ∪ {C,A}, and
←→
CD with D ∈ AB ∪ {A,B}.

Proposition 3.6.

(1) Every line segment contains infinitely many points.
(2) There are infinitely many lines passing through

every point.
(3) On every line there are infinitely many points on

both sides of any point of the line.
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3.7. Axiom of Dimension

II. E =
←→

A0B0C0.

Definition 3.8. Let a be a straight line and A,B two
points not on a. We say that A,B lie on the same
side of a if AB ∩ a = ∅. We say that A,B lie on
different sides of a if AB ∩ a 6= ∅.
Theorem 3.9. Let a be a straight line. Then there are
unique subsets α1, α2 of E, called the half–planes of
a, such that

(1) All points of α1 are on the same side of a and all
points of α2 are on the same side of a. If A ∈ α1

and B ∈ α2, then A and B are on different sides
of a.

(2) α1 ∩ α2 = ∅.
(3) E = α1 ∪ a ∪ α2.

With these basic results we can define the “interior of a
triangle”.

Definition 3.10. Let ∆ABC be given. The inte-
rior of ∆ABC is the intersection of the half–plane

of
←→
AB which contains C and the half–plane of

←→
BC

which contains A and the half–plane of
←→
CA that con-

tains B.
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We now introduce angles.

Definition 3.11. Let O be a point and h and k two
half–rays emanating from O. The set ∠(h, k) = {h, k} =
∠(k, h) is the angle with legs h, k and vertex O. If
A ∈ h and B ∈ k, then we set ∠AOB = ∠BOA =

∠(h, k). Let αk be the half–plane of
←→
k containing

h and αh the half–plane of
←→
h containing k. Then

αk ∩ αh is the interior of ∠(h, k).

Theorem 3.12. (Crossbar Theorem) Let ∠AOB be
given and let C be a point in the interior of the angle.

Then
←→
OC intersects AB.

In addition to the undefined relation “between” for triples
of points we have an undefined relation called “congru-
ence” between two line segments, and an undefined rela-
tion, also called “congruence” between two angles.

Definition 3.13. Two line segments AB and CD
may or may not be congruent. If they are, we write
AB ≡ CD. Two angles ∠(h, k) and ∠(h′, k′) may
or may not be congruent. If they are, we write
∠(h, k) ≡ ∠(h′, k′).
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3.14. Axioms of Congruence (1)

III1. Let AB be any line segment, a any straight line
and A′ be any point on a. Then there exist points
B′ and B′′ on a such that B′A′B′′ and AB ≡ B′A′

and AB ≡ A′B′′.
III2. If A′B′ ≡ AB and A′′B′′ ≡ AB, then A′B′ ≡

A′′B′′.
III3. If B ∈ AC, B′ ∈ A′C ′, AB ≡ A′B′, and BC ≡

B′C ′, then AC ≡ A′C ′.

3.15. Axioms of Congruence (2)

III4. Let ∠(h, k) be an angle, a a line, α one of the half–
planes of a, and h′ a half–ray of a. Then there
exists precisely one half–ray k′ such that ∠(h, k) ≡
∠(h′, k′) and k′ belongs to α.

III5. ∠(h, k) ≡ ∠(h, k).
III6. Given ∆ABC and ∆A′B′C ′, if AB ≡ A′B′, AC ≡

A′C ′, and ∠BAC ≡ ∠B′A′C ′, then ∠ABC ≡
∠A′B′C ′.
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The following proposition says that congruence of line
segments is an equivalence relation.

Proposition 3.16. For any line segments AB, A′B′,
A′′B′′ the following hold.

(1) AB ≡ AB.
(2) If AB ≡ A′B′, then A′B′ ≡ AB.
(3) If AB ≡ A′B′ and A′B′ ≡ A′′B′′, then AB ≡

A′′B′′.

Now congruent triangles can be defined and the con-
gruence theorems can be proved pretty much the way we
have done it following Euclid. However, we are now in a
position to argue the relations which we had to read off
pictures previously.
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We depart from Euclid in introducing measurement be-
fore we talk about area. This requires the following ax-
ioms.

3.17. Axioms of Continuity

IV1. (Axiom of Archimedes) For any line a, any line
segment AB on a, and any point A1 between A
and B, there exist n− 1 points A2, A3, . . . , An ∈ a
such that

AA1 ≡ A1A2 ≡ A2A3 ≡ A3A4 ≡ · · · ≡ An−1An,

AA1A2, AiAi+1Ai+2 and An−1BAn or B = An.
IV2. (Cantor’s Axiom) For any line segments AiBi, i =

1, 2, . . ., such that both Ai+1 and Bi+1 are between
Ai and Bi for all i, there is a point contained in
all line segments AiBi.
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Definition 3.18. Two non–intersecting lines are called
parallel. Every line is also considered parallel to it-
self.

3.19. Axiom on Parallels
V. (Euclid) For any line a and any point A /∈ a there

is at most one parallel to a through A.

While Euclid proved the similarity theorems and the
Pythagorean Theorem using the area concept, we make
repeated use of the congruence and the axioms of Archimedes
and Cantor in order to prove the theorems on an angle
cut by parallel lines. These theorems are equivalent to
the similarity theorems and the Pythagorean Theorem
follows from these.

The area concept is introduced axiomatically and the
usual area formulas are derived easily.
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4. Consistency, Completeness,
Independence of Axioms

An axiom system for plane Euclidean geometry intends
to capture Euclidean geometry exactly. Every theorem of
Euclidean geometry ideally is derivable from the axiom
system.

Saying this presupposes that we know what Euclidean
geometry really is. This is, of course, a problem. How-
ever, we do live in a world and we are in some way or other
involved with geometry, we have experiences of space, and
science and mathematics have successfully used the geom-
etry which Euclid suggests and describes. These geomet-
ric ideas are so overpowering that the eminent philosopher
Immanuel Kant (1724–1804) taught that they are built
into our minds and that the world is Euclidean since this
is the only way we can perceive it.
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In setting up an axiom system we are guided by our pre-
conceived ideas and we certainly want that the axioms are
“obvious truths”. However, having achieved this, the ax-
iom system and its consequences assume a life of their
own. From a logical point of view there is one main
problem: The axioms must be consistent, i.e., there
may not be any hidden contradiction that could show up
somewhere along the line when some statement is derived
and also its negation.

How can one be sure that an axiom system is consis-
tent? One way of doing it, is to come up with a “real
life example” for which the axioms are all true. In the
case of Euclidean geometry, the real life example can be
analytic geometry where a point is interpreted as a
pair (x, y) of real numbers, and all other concepts are in-
terpreted as is usually done. This model of Euclidean
geometry satisfies all axioms. We can draw the following
conclusion.

Theorem 4.1. If the real number system is consis-
tent, then so is Euclidean geometry.
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Is the real number system consistent? All experience
for thousands of years points to an affirmative answer,
but it was shown by Kurt Gödel in 1931 that it is not
possible to prove the consistency of something like the
real number system from itself. This means that we have
to live with a degree of uncertainty even in the certain
world of mathematics.
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It should be noted that there is a considerable amount
of choice in axiomatizing a theory. If we have two axiom
systems S1 and S2 which deal with the same undefined
and defined terms, then the systems are logically equiva-
lent if every axiom of S1 can be proved on the basis of the
axioms of S2 and conversely. Given such freedom, what
considerations guide the choice of axioms?
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To begin with unnecessary axioms should be avoided,
i.e., no axiom should be provable from the other axioms.
An axiom system which satisfies this condition is called
independent. With this terminology we can say that
the century long search for a proof of the Parallel Axiom
was to show its dependence. At the end it turned out to
be independent of the other axioms.
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Another consideration is to make the axioms as simple
and basic as possible. From a puristic standpoint, the
axioms are supposed to be as weak as possible, but this
is a minor consideration when one is interested mainly
in efficiently developing a rigorous theory. In the above
axiom system, it would have been enough to postulate
IV2. and V. for a single particular line rather than for all
lines. The advantage of weak axioms is that it is easier to
establish a model for the theory, the disadvantage is that
it is harder to develop the theory.


