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1. Definitions, Axioms and Postulates

Definition 1.1. 1. A point is that which has no part.
2. A line is breadth-less length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
8. A plane angle is the inclination to one another of two lines in a plane

which meet one another and do not lie in a straight line.
10. When a straight line set up on a straight line makes the adjacent angles

equal to one another, each of the equal angles is right, and the straight line
standing on the other is called a perpendicular to that on which it stands.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure are
equal to one another.

21. Rectilineal figures are those which are contained by straight lines, tri-
lateral figures being those contained by three, ...

23. Parallel straight lines are straight lines which being in the same plane and
being produced indefinitely in both directions, do not meet one another in
either direction.

The definitions describe some objects of geometry. When we discuss a modern
axiom system for Euclidean geometry, we will see that certain fundamental concepts
must remain undefined. The first of these is the point. We assume that the
Euclidean plane is an abstract set E whose elements are called “points”, whatever
they may be. We go along with Euclid to the extend of illustrating points as chalk
marks on the blackboard. Notice that Euclid calls any bent or straight curve a
“line” and that lines and straight lines all have end points. We will use the term
line to denote a second kind of undefined objects which are certain subsets of E
and correspond to Euclid’s “straight lines produced indefinitely in either direction”.
So line and straight line is the same for us, and lines have no endpoints. What is a
straight line for Euclid is a line segment AB for us. We must settle for the moment
for our intuitive pictorial idea of a line segment. If we pretend that we know the
concept of a half ray emanating from an initial point, then we can define “angle”
rigorously (see below). If A,B are distinct points, then they determine a unique

half ray, denoted
−→
AB, which has A as initial point and contains B. In Definition

10, Euclid talks without explanation about “equal” angles and similarly he takes
for granted a concept of “equal” line segments and triangles. As a matter of fact,
we must accept an undefined relation between line segments AB and A′B′, called
congruence and we write AB ≡ A′B′ if the relation holds. Similarly, we assume
an undefined relation between angles ∠A,∠A′ called angle congruence or simply
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congruence and write ∠A ≡ ∠A′ if the angles are in fact congruent. We now list
some modern definitions in order to clarify subsequent discussions.

Definition 1.2. (1) A set of points is collinear if the set is contained in some
straight line.

(2) A triangle ∆ ABC is any set {A,B,C} of non–collinear points. The points
A,B, C are the vertices of the triangle. The line segments AB, BC, CA
are called the sides of the triangle.

(3) An angle is a set of two half–rays h, k with common initial point not both
contained in the same line. We write ∠(h, k) = {h, k}.

(4) Let ∆ ABC be a triangle. The angles ∠A = ∠(
−→
AB,

−→
AC), ∠B = ∠(

−→
BC,

−→
BA),

and ∠C = ∠(
−→
CA,

−→
CB) are the angles of the triangle.

(5) Two triangles are congruent if their vertices can be matched in such a way
that that all the corresponding sides are congruent and all the corresponding
angles are congruent. If the vertices of the one triangles are labeled A,B,C
and the corresponding vertices of the other are labeled A′, B′, C ′, then we
write ∆ ABC ≡ ∆ A′B′C ′ and we have AB ≡ A′B′, BC ≡ B′C ′, CA ≡
C ′A′, ∠A ≡ ∠A′, ∠B ≡ ∠B′, and ∠C ≡ ∠C ′.

(6) Let C be a point, and AB a line segment. The circle with center C and
radius AB is the set of all points P such that PC ≡ AB.

(7) Two (different) lines are parallel if they do not intersect (in the sense of
set theory). We also agree, for technical reasons, that a line is parallel to
itself.

1.3. Euclid’s Postulates Let the following be postulated:

(1) To draw a straight line from any point to any point.
(2) To produce a finite straight line continuously in a straight line.
(3) To describe a circle with any center and distance.
(4) That all right angles are equal to one another.
(5) That, if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.

1.4. Euclid’s Common Notions or Axioms

(1) Things which are equal to the same thing are also equal to one another.
(2) If equals be added to equals, the wholes are equal.
(3) If equals be subtracted from equals, the remainders are equal.
(4) Things which coincide with one another are equal to one another.
(5) The whole is greater than the part.

2. Book I. Propositions

After the definitions, postulates, and axioms, the propositions follow with
proofs.

In the following some propositions are stated in the translation given in Euclid,
The Thirteen Books of THE ELEMENTS, Translated with introduction and com-
mentary by Sir Thomas L. Hearth, Dover Publications 1956. Most propositions are
translated into modern mathematical language and labeled by a decimal number
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indicating section number and item number. These results may be used and should
be referred to in exercises.

Propositions 1 to 3 state that certain constructions are possible.

2.1. Proposition 4 If two triangles have two sides equal to two sides respectively,
and have the enclosed angles contained by the equal straight lines equal, they will
also have the base equal to the base, the triangle will be equal to the triangle, and the
remaining angles will be equal to the remaining angles respectively, namely those
which the equal sides sub-tend.

Proof. Superposition.

2.2. Proposition 4 bis Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡
A′B′, AC ≡ A′C ′ and ∠A ≡ ∠A′. Then ∆ ABC ≡ ∆ A′B′C ′. (sas)

2.3. Proposition 5 In ∆ ABC, if AB ≡ AC then ∠B ≡ ∠C.

2.4. Proposition 6 In ∆ ABC, if ∠B ≡ ∠C then AB ≡ AC.

Proposition 7 is preparatory to Proposition 8.

2.5. Proposition 8 Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡ A′B′,
BC ≡ B′C ′ and CA ≡ C ′A′. Then ∆ ABC ≡ ∆ A′B′C ′. (sss)

Proposition 9 describes a method for bisecting an angle. Similarly, Proposition
10 tell how to bisect a line segment. Proposition 11 contains a construction of the
perpendicular to a line at a point on the line.

Exercise 2.6. (1) Describe a compass and straight-edge construction for the
perpendicular bisector of a given angle. Prove that the construction works.

(2) Describe a compass and straight-edge construction for the bisector of a given
line segment. Prove that the construction works.

(3) Describe a compass and straight-edge construction for the perpendicular to
a given line at a given point on the line. Prove that the construction works.

2.7. Proposition 12 To a given infinite straight line, from a given point which is
not on it, to draw a perpendicular straight line.

2.8. Proposition 12 There is a compass and straight-edge construction for the
perpendicular of a given line passing through a point not on the line.

Construction. Choose a point D in the half plane of the given line l not
containing the given point C. Draw the circle with center C and radius CD. It
cuts l in points G, E. Let H be the midpoint of GE. Then HC is the desired
perpendicular. �

2.9. Proposition 13 Vertical angles are congruent.

What follows now are “geometric inequalities”. They are proved without the use
of Postulate 5.

2.10. Proposition 16 In ∆ ABC, the exterior angle at C is larger than either ∠A
or ∠B.

2.11. Proposition 17 In ∆ ABC, ∠A + ∠B < 2R.

2.12. Proposition 18 In ∆ ABC, if BC > AC, then ∠A > ∠B.
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2.13. Proposition 19 In ∆ ABC, if ∠A > ∠B then BC > AC.

It is interesting that the Proposition 18 implies its converse, Proposition 19.

2.14. Proposition 20 (Triangle Inequality) In any ∆ ABC, AC + BC > AB.

Exercise 2.15. (1) A farmer’s house and his barn are on the same side of a
straight river. The farmer has to walk from his house to the river and to
fetch water and then to the barn to feed and water his horses. At which
point on the river should he fetch water so that his path from the house via
the river to the barn is as short as possible?

(2) Prove Euclid’s Proposition 21.

2.16. Proposition 21 Let ∆ ABC be given, and let C ′ be a point in the interior
of ∆ ABC. Then AC + BC > AC ′ + BC ′ and ∠C ′ > ∠C.

2.17. Proposition 22 If a, b, and c are line segments such that a + b > c then
there is a triangle ∆ ABC such that AB ≡ c, BC ≡ a, and CA ≡ b.

2.18. Proposition 25 If two triangles have two sides equal to two sides respec-
tively, but have the base greater than the base, they will also have the one of the
angles contained by the equal straight lines greater than the other.

2.19. Proposition 25 Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡ A′B′

and AC ≡ A′C ′ but BC > B′C ′ then ∠A > ∠A′.

2.20. Proposition 26 Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡
A′B′, ∠A ≡ ∠A′ and ∠B ≡ ∠B′ then ∆ ABC ≡ ∆ A′B′C ′. (asa)

The following congruence theorem does not appear in the Elements.

2.21. Proposition Let ∆ ABC and ∆ A′B′C ′ be triangles such that ∠A ≡ ∠A′,
AB ≡ A′B′, BC ≡ B′C ′ and BC > AB then ∆ ABC ≡ ∆ A′B′C ′. (asS)

2.22. Proposition 27 If a line cuts a pair of lines such that the alternating angles
are congruent then the lines of the pair are parallel.

2.23. Proposition 28 If a line cuts a pair of lines such that corresponding angles
are congruent, then the lines of the pair are parallel.

Exercise 2.24. Note that Proposition 2.8 says in particular that given a line l and
a point P not on l, there exists a perpendicular from P to l. By Proposition 2.23
the perpendicular is unique.

1. Let P be a point not on the line l and let Q ∈ l be the foot of the perpendic-
ular from P to l. Let X be any point of l, X 6= Q. Prove that PX > PQ.
Hint: 2.10 and 2.13.

The line segment PQ in (1) is called the (segment) distance of P from l. The
(segment) distance of the point A from the point B is the line segment AB.

2. Let a, b be distinct lines intersecting in the point A. Prove: A point X has
congruent segment distances from line a and line b if and only if X lies on
the angle bisector of one of the four angles formed by the line a and b.

3. Let A,B be two distinct points. Prove that a point X has congruent segment
distances from point A and point B if and only if X lies on the perpendicular
bisector of AB.

Exercise 2.25. Prove the following facts.
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(1) The bisectors of the three angles of a triangle meet in a point.
(2) The perpendicular bisectors of the three sides of a triangle meet in a single

point.

Exercise 2.26. Let C be the circle with center A and radius AB. The interior of
C is the set of all points X such that AX < AB; the exterior of C is the set of all
points X such that AX > AB. Take for granted the fact that a line which contains
an interior point of C intersects C in more than one point.

(1) Let P ∈ C and let t be the unique line containing P such that t is perpen-

dicular to
←→
AP . Prove that every point of t except P belongs to the exterior

of C.
(2) Let t be a line which intersects C in exactly one point T . Prove that

←→
AT is

perpendicular to t.
(3) Prove that a line intersects a circle in at most two points.

Now, for the first time, Postulate 5 will be used.

2.27. Proposition 29 If a, b are a pair of parallel lines then the corresponding
angles at a transversal are congruent.

2.28. Proposition 30 If a is parallel to b, and b is parallel to c, then a is parallel
to c.

The famous next theorem contains the important fact that the angle sum of a
triangle is 180◦.

2.29. Proposition 32 In any triangle, if one of the sides be produced, the exterior
angle is equal to the two interior and opposite angles, and the three interior angles
of the triangle are equal to two right angles.

Exercise 2.30. Prove that the three heights (or altitudes) of a triangle meet in a
single point using that the perpendicular bisectors of the three sides of a triangle
meet in a single point (Exercise 2.25).

Propositions 33 to 36 deal with parallelograms.

Exercise 2.31. Recall that a parallelogram is a quadrilateral with opposite sides
parallel.

(1) (Proposition 33) Let �ABCD be a quadrilateral with sides AB, BC,
CD, DA such that AB is opposite CD, and BC is opposite DA. Suppose

that AD ≡ BC and
←→
AD is parallel to

←→
BC. Prove that AB ≡ CD and

←→
AB

is parallel to
←→
DC.

(2) (Proposition 34) Let �ABCD be the parallelogram with sides AB, BC,
CD, DA such that AB is opposite CD, and BC is opposite DA. Prove
that AB ≡ CD, BC ≡ AD and that the diagonals BD and AC bisect one
another.

The following proposition deals with area for the first time. When two plane
figures are called “equal” in Euclid, it means in modern terms that they have equal
areas. The concept of area is treated as a known, unquestioned concept, which is
not satisfactory nowadays. It is interesting, however, to observe which properties
of area are used in the proofs.
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2.32. Proposition 35 Parallelograms which are on the same base and in the same
parallels are equal to one another.

Proof. Let ABCD, EBCF be parallelograms on the same base BC and in the
same parallels AF , BC;

I say that ABCD is equal to the parallelogram EBCF .
For, since ABCD is a parallelogram, AD is equal to BC. For the same reason

EF is equal to BC, so that AD is also equal to EF [C.N. 1]; and DE is common;
therefore the whole AE is equal to the whole DF [C.N. 2]. But AB is also equal
to DC [I. 34]; therefore the two sides EA, AB are equal to the two sides FD, DC
respectively, and therefore the angle FDC is equal to the angle EAB, the exterior
to the interior [I. 29]; therefore the base EB is equal to the base FC, and the
triangle EAB will be equal to the triangle FDC [I, 4]. Let DGE be subtracted
from each; therefore the trapezium ABGD which remains is equal to the trapezium
EGCF which remains [C.N. 3]. Let the triangle GBC be added to each; therefore
the whole parallelogram ABCD is equal to the whole parallelogram EBCF [C.N.
2]. �

2.33. Proposition 38 Triangles which are on equal bases and in the same parallels
are equal to one another.

2.34. Proposition 47 (Theorem of Pythagoras) In right–angled triangles the
square on the side sub-tending the right angle is equal to the squares on the sides
containing the right angle.

The following is the converse of the Pythagorean Theorem.

2.35. Proposition 48 If in a triangle the square on one of the sides be equal to
the squares on the remaining two sides of the triangle , the angle contained by the
remaining two sides of the triangle is right.

Exercise 2.36. Let ∆ ABC be a right triangle with ∠C ≡ R. Let D ∈
←→
AB be

such that
←→
CD is perpendicular to

←→
AB, in other words, CD is the height from C.

Let a = BC, b = AC, c = AB, p = AD, q = DB, and h = CD. Think of these
quantities as lengths, so that the usual algebra can be performed on them. Use the
Theorem of Pythagoras to prove

(1) h2 = p · q.
(2) a2 = q · c.
(3) b2 = p · c.

3. Book II

Book II contains a number of propositions on area which is the way to deal
with products in Euclidean mathematics. Some propositions amount to algebraic
identities which are very simple in today’s algebraic language; some propositions use
the Pythagorean Theorem to solve quadratic equations. An example is Proposition
14.

3.1. Proposition 14 To construct a square equal to a given rectilineal figure.

Exercise 3.2. (Theorem of Thales) Let AB be a diameter of a circle and C
any point on the circle. Prove that ∠ACB is a right angle.



EUCLID 7

Exercise 3.3. (Proposition 14) Let a rectangle with sides a and b be given. By
compass and ruler alone, construct a square which has the same area as the given
rectangle. In other words, given line segments a,b construct a line segment x such
that x2 = a · b.

3.4. Corollary For any positive real number a, construct
√

a.

The following proposition is much more tricky.

3.5. Proposition 11 Let AB be a given line segment. Find a point C ∈ AB such
that the square over AC has the same area as the rectangle with sides AB and CB.

Proof. Let r = |AB| (the length of AB), and let a = |AC|. The problem
amounts to constructing

a =
r

2
(−1 +

√
5). �

4. Book III

This part of the Elements deals with circles and their properties.
Here is a sampling of definitions from Book III.

Definition 4.1. 2. A straight line is said to touch a circle which, meeting
the circle and being produced, does not cut the circle.

6. A segment of a circle is the figure contained by a straight line and a
circumference of a circle.

8. An angle in a segment is the angle which, when a point is taken on
the circumference of the segment and straight lines are joined from it to
the extremities of the straight line which is the base of the segment, is
contained by the straight lines so joined.

Recall that a straight line cuts a circle in at most two points.

Exercise 4.2. (Proposition 10) Show that two circles intersect in at most two
points.

Definition 4.3. Let C be a circle with center Z, and let A, B be points on the
circle, i.e., A,B ∈ C.

(1) The line segment AB is a chord of C.
(2) A straight line which intersects the circle in two points is called a secant

of the circle.
(3) A straight line which intersects the circle in exactly one point is said to

touch the circle, and to be tangent to the circle.
(4) An arc of a circle is the intersection of the circle with a half–plane of a

secant.
(5) The central angle over the chord AB is the angle ∠AZB.
(6) An inscribed angle is an angle ∠ACB where C is some point on the

circle.
(7) Two circles which intersect in exactly one point are said to touch one

another.

Exercise 4.4. (Proposition 1) Given three (distinct) points of a circle, construct
the center by compass and ruler alone.

4.5. Proposition 10 A circle does not cut a circle at more than two points.
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4.6. Proposition 16 The straight line drawn at right angles to the diameter of
a circle from its extremities will fall outside the circle, and into the space between
the straight line and the circumference another straight line cannot be interposed;
further the angle of the semi-circle is greater, and the remaining angle less, than
any acute rectilineal angle.

4.7. Proposition 18 The tangent at a point A of a circle is perpendicular to the
radius vector through A.

4.8. Proposition 20 Let AB be a chord of a circle C with center Z. Then the
central angle over the chord AB is twice the size of any inscribed angle ∠ACB when

C and Z are on the same side of
←→
AB.

Exercise 4.9. Find and prove the relationship between the central angle ∠AZB

and an inscribed angle ∠ACB when C and Z are on different sides of
←→
AB.

4.10. Proposition 21 In a circle the inscribed angles over the same chord AB

and on the same side of
←→
AB are congruent.

Exercise 4.11. (1) Describe and verify a compass and ruler construction of
the tangents to a circle passing through a given exterior point of the circle.

(2) Describe and verify a compass and ruler construction of the common tan-
gents of two circles.

4.12. Proposition 36 Let C be a circle and let P be a point of the exterior of C.
Let T ∈ C such that

←→
PT is tangent to C and let some other line through P intersect

C in the points A and B. Then

PA · PB = PT 2.

Exercise 4.13. Let C be a circle with center Z and let P be a point of the exterior

of C. Let T ∈ C such that
←→
PT is tangent to C and let

←→
PZ intersect C in the points

A and B. Prove that
PA · PB = PT 2.

5. Book IV

This book deals with connections between circles and triangles essentially. Here
are some sample theorems.

5.1. Proposition 4 In a given triangle to inscribe a circle.

This proposition essentially uses the following fact which was shown in Exer-
cise 2.24.2.

Proposition 5.2. The angle bisector is the locus of all points equidistant from the
legs of the angle.

5.3. Proposition 5 About a given triangle to circumscribe a circle.

This proposition can be done easily using that the perpendicular bisector of a
line segment is the locus of all points equidistant from the endpoints of the line
segment (Exercise 2.25).

5.4. Proposition 10 To construct an isosceles triangle having each of the angles
at the base double of the remaining one.

5.5. Proposition 11 In a given circle, inscribe a regular pentagon.
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6. Book V

This book contains the theory of proportions and the algebra of line segments.
Already the definitions are hard to understand and the propositions are com-
plicated, especially when compared with the elegant algebraic language which is
available to us today. However, this Book throws considerable light on the Greek
substitute for real number.

Here are some sample definitions.

Definition 6.1. (1) A magnitude is a part of a magnitude, the less of the
greater, when it measures the greater.

(2) The greater is a multitude of the less when it is measured by the less.
(3) A ratio is a sort of relation in respect of size between two magnitudes of

the same kind.
(4) Magnitudes are said to have a ratio to one another which are capable when

multiplied, of exceeding one another.
(5) Magnitudes are said to be in the same ratio, the first to the second and

the third to the fourth, when, if any equimultiples whatever be taken of the
first and third, and any equimultiples whatever of the second and the fourth,
the former equimultiples alike exceed, are alike equal to, or alike fall short
of, the latter equimultiples respectively taken in corresponding order.

(6) Let magnitudes which have the same ratio be called proportional.

There are 11 more definitions at the start of the book. Note that 6.1.1 defines
divisor, and 6.1.2 multiple. Definition 6.1.3 says that a certain relationship be-
tween the sizes of magnitudes may or may not exist; if it exists it is called “ratio”.
If a and b are magnitudes “of the same kind”, then a : b = a/b is their ratio, so
some real number by our comprehension. The next Definition (4) says when such
a relationship exists: For any integral multiple ma there is an integral multiple nb
such that nb > ma and conversely. This definition says that the ratio a : b can be
approximated to any degree of precision by rational numbers. Definition (5), due
to Eudoxos of Knidos (408?–355?), then says when two ratios a : a′ and b : b′ are
equal in terms of rationals: a/a′ = b/b′ if and only if for every rational m/n, we
have

a/a′

 >
=
<

 m/n ⇔ b/b′

 >
=
<

 m/n.

This is a valid criterion for the equality of the real numbers a/a′ and b/b′.
Here are some sample theorems which are translated into modern algebraic for-

mulas. They should be interpreted geometrically in order to reflect the Greek
original. Also note that ma where m is a positive integer and a a magnitude (line
segment, area, volume), means “m copies of a added together”, and does not mean
a product. This is analogous to the definition of powers. In the following m,n, p, . . .
stand for positive integers while a, b, c, . . . stand for magnitudes.

6.2. Proposition 1 ma + mb + mc + · · · = m(a + b + c + . . . ).

6.3. Proposition 2 ma + na + pa + · · · = (m + n + p + . . . )a.

6.4. Proposition 3 n(ma) = (nm)a.

6.5. Proposition 4 If a : b = c : d then ma : nb = mc : nd.
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6.6. Proposition 5 (ma)− (nb) = (m− n)b.

There are 25 propositions of this nature altogether.

7. Book VI

The results of this book which deals with similarity contains very useful and
important results.

Definition 7.1. Similar rectilineal figures are such as have their angles sever-
ally equal and the sides about the equal angles proportional.

We specialize and rephrase this definition to triangles. Note the analogy to
“congruent”.

Definition 7.2. Two triangles are similar if they can be labelled ∆ ABC and
∆ A′B′C ′ in such a way that ∠A ≡ ∠A′, ∠B ≡ ∠B′, ∠C ≡ ∠C ′, AB : A′B′ =
BC : B′C ′ = CA : C ′A′.

Interesting is the following definition.

Definition 7.3. A straight line is said to have been cut in the extreme and
mean ratio when, as the whole line is to the greater segment, so is the greater to
the less.

The first proposition says, in modern terms, that the area of parallelograms and
triangles is proportional to the product of base and height. The proof requires the
definition of “equal ratios”.

7.4. Proposition 1 Triangles and parallelograms which are under the same height
are to one another as their bases.

The following result is basic.

7.5. Proposition 2 If a straight line be drawn parallel to one of the sides of a
triangle, it will cut the sides of the triangle proportionally; and if the sides of the
triangle be cut proportionally, the line joining the points of section will be parallel
to the remaining side of the triangle.

7.6. Proposition 2 Let ∠CAB be cut by a transversal parallel to BC in the points

B′, C ′ where the notation is chosen so that B′ ∈
−→
AB and C ′ ∈

−→
AC. Then

AB : BB′ = AC : CC ′ if and only if BC ‖ B′C ′.

Proof. (Euclid) For let B′C ′ be drawn parallel to BC, one of the sides of the
triangle ABC; I say that, as BB′ is to B′A, so is CC ′ to C ′A. For let BC ′, CB′ be
joined. Therefore the triangle BB′C ′ is equal to the triangle CB′C ′, for they are
on the same base B′C ′ and in the same parallels B′C ′, BC [I. 38]. And the triangle
AB′C ′ is another area. But equals have the same ratio to the same; therefore as
the triangle BB′C ′ is to the triangle AB′C ′, so is the triangle CB′C ′ to the triangle
AB′C ′. etc. �

7.7. Remark In the situation of Proposition 2, AB : AB′ = AC : AC ′ is equivalent
to AB : BB′ = AC : CC ′.

7.8. Proposition 3 In ∆ ABC if the bisector of ∠A meets BC in the point D,
then CD

DB = AC
AB .
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The next four proposition are “similarity theorems” in analogy to the “congru-
ence theorems”. Recall our definition of similar triangles.

7.9. Proposition 4 (∼aa) Let ∆ ABC and ∆ A′B′C ′ be triangles such that ∠A ≡
∠A′ and ∠B ≡ ∠B′. Then ∆ ABC ∼ ∆ A′B′C ′.

7.10. Proposition 5 (∼sss) Let ∆ ABC and ∆ A′B′C ′ be triangles. If AB :
A′B′ = BC : B′C ′ = CA : C ′A′ then ∆ ABC ∼ ∆ A′B′C ′.

7.11. Proposition 6 (∼sas) Let ∆ ABC and ∆ A′B′C ′ be such that ∠A ≡ ∠A′

and AB : A′B′ = AC : A′C ′ then ∆ ABC ∼ ∆ A′B′C ′.

The following proposition is not quite Euclid’s Proposition 7, but a little stronger.

Proposition 7.12. (∼asS) Let ∆ ABC and ∆ A′B′C ′ be triangles. If ∠A ≡ ∠A′,
AB : A′B′ = CB : C ′B′ and CB > AB, then ∆ ABC ∼ ∆ A′B′C ′.

We are now in a position to prove a number of propositions whose proofs we
have delayed.

Exercise 7.13. (a) Let ∆ ABC be a triangle such that ∠B ≡ ∠C ≡ 2∠A. Let
the angle bisector of ∠C intersect the side AB in the point D. Prove that AD2 =
AB ·DB.

(b) Use (a) and the construction 3.4 (II, 11) in order to solve 5.5 (IV, 11): In a
given circle, inscribe a regular pentagon.

7.14. Proposition 8 Let ∆ ABC be a right triangle with ∠C ≡ R. Let the foot of
the perpendicular from C to AB be H. Then ∆ ABC ∼ ∆ ACH ∼ ∆ CBH.

Exercise 7.15. Let ∆ ABC be a triangle as in Proposition 8. Set a = BC, b =
CA, c = AB, p = AH, q = HB. Use Proposition 8 to give a new proof of the
formulas h2 = pq, a2 = qc, b2 = pc and of the Pythagorean Theorem.

7.16. Proposition 9 By compass and ruler alone, a given line segment can be
divided into a prescribed number of congruent line segments.

Exercise 7.17. By compass and ruler alone, cut a given line segment AB into
3,7,11 congruent subsegments.

Exercise 7.18. (Proposition 10) Let AB be a given line segment, and let A′B′ be
another line segment. Let D′ be a point between A′ and B′ on A′B′. By compass
and ruler alone, construct a point D ∈ AB such that AD : DB = A′D′ : D′B′.

Exercise 7.19. (Proposition 11) Given line segments a, b, by compass and ruler
alone, construct a line segment x such that a : b = x : a.

An important result for Greek mathematics is the construction of the so-called
forth proportional.

Exercise 7.20. (Proposition 12) Let a, b, c be given line segments. By compass and
ruler alone, find a line segment x such that a : b = c : x.

7.21. Proposition 19 If ∆ ABC ∼ ∆ A′B′C ′ then

area ∆ ABC : area∆ A′B′C ′ = (AB : A′B′)2.

Exercise 7.22. Use the area formula for triangles: area ∆ ABC = 1
2base·height

to prove Proposition 19.
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Proposition 7.23. Let C be a circle, and P a point in the exterior of the circle.
Suppose that a line through P intersects the circle in the points A and B, and that
another line through P intersects the circle in the points A′ and B′. Then

PA · PB = PA′ · PB′.

Exercise 7.24. Use 7.23 and 4.13 to prove 4.12 (Proposition III, 36).

Proposition 7.25. Let C be a circle, and P a point in the interior of the circle.
Suppose that a line through P intersects the circle in the points A and B, and that
another line through P intersects the circle in the points A′ and B′. Then

PA · PB = PA′ · PB′.

8. Book VII, VIII, IX

These books deal with natural numbers which are defined as a “multitude
composed of units”. Ratios of numbers are what are rational numbers for us. A
good deal of important and standard number theory is contained in these books.

9. Book X

“Book X does not make easy reading” (B. van der Waerden, Science Awakening,
p. 172.) It deals via geometry and geometric algebra with what we call today
rational and irrational numbers. In fact, 13 different kinds of irrationalities are
distinguished.

Definition 9.1. (1) Those magnitudes are said to be commensurable which
are measured by the same measure, and those incommensurable which
cannot have any common measure.

(2) Straight lines are commensurable in square when the squares on them
are measured by the same area, otherwise they are incommensurable in
square.

(3) Line segments are rational if they are commensurate with a fixed line seg-
ment (or unit), otherwise irrational.

The book contains 115 propositions none of which is recognizable at first sight.
There is general agreement that the difficulty and the limitations of geometric

algebra contributed to the decay of Greek mathematics (Van der Waerden, Science
Awakening, p.265.) Author like Archimedes and Apollonius were too difficult to
read. However, Van der Waerden disputes that it was a lack of understanding
of irrationality which drove the Greek mathematicians into the dead-end street of
geometric algebra. Rather it was the discovery of irrationality, e.g. the diagonal
of a square is incommensurable with the side of the square, and a strict, logical
concept of number which was the root cause.

10. Books XI, XII, and XIII

Book XI deals with solid geometry and theorems on volumes, in geometric lan-
guage, of course. Book XII uses the method of exhaustion to discuss the area of
curved figures, e.g. the circle. Finally, Book XIII contains a discussion of the five
Platonic solids (regular polyhedra).


