
Georg Cantor and Set Theory

1. Life

• Father, Georg Waldemar Cantor, born in Den-
mark, successful merchant, and stock broker
in St Petersburg. Mother, Maria Anna Böhm,
was Russian.
• In 1856, because of father’s poor health, family

moved to Germany.
• Georg graduated from high school in 1860 with

an outstanding report, which mentioned in par-
ticular his exceptional skills in mathematics, in
particular trigonometry.
• “Höhere Gewerbeschule” in Darmstadt from 1860,

Polytechnic of Zürich in 1862. Cantor’s father
wanted Cantor to become:-

... a shining star in the engineering firmament.
• 1862: Cantor got his father’s permission to study

mathematics.
• Father died. 1863 Cantor moved to the Uni-

versity of Berlin where he attended lectures by
Weierstrass, Kummer and Kronecker.
• Dissertation on number theory in 1867.
• Teacher in a girls’ school.
• Professor at Halle in 1872.
• Friendship with Richard Dedekind.
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• 1874: marriage with Vally Guttmann, a friend
of his sister. Honeymoon in Interlaken in Switzer-
land where Cantor spent much time in mathe-
matical discussions with Dedekind.
• Starting in 1877 papers in set theory. “Grund-

lagen einer allgemeinen Mannigfaltigkeitslehre”.
Theory of sets not finding the acceptance hoped
for.
• May 1884 Cantor had the first recorded attack

of depression. He recovered after a few weeks
but now seemed less confident.
• Turned toward philosophy and tried to show

that Francis Bacon wrote the Shakespeare plays.
• International Congress of Mathematicians 1897.

Hurwitz openly expressed his great admiration
of Cantor and proclaimed him as one by whom
the theory of functions has been enriched. Jacques
Hadamard expressed his opinion that the no-
tions of the theory of sets were known and in-
dispensable instruments.
• Paradoxes of set theory appear.
• Retirement 1913, frequently ill, died of a heart

attack.
• Hilbert: ...the finest product of mathematical

genius and one of the supreme achievements of
purely intellectual human activity.
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2. Set Theory

What do we count?

the birds of a flock
the fish in a school
the students of the student body
the students of the class of 2007
the bisons of a herd
the chairs in Bil 152
the students in Math 100
the members of a tribe
the members of a congregation
the residents of Hawaii
the soldiers in a regiment
a band of Indians
the members of the Mafia
the geese in a gaggle
the members of the middle class
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What are sets?

flock of birds
school of fish
student body
class of 2007
herd of bison
herd of sheep
tribe
congregation
people
regiment of soldiers
band of Indians
Mafia
gaggle of geese
the middle class



abstraction⇒ SET.

Definition 2.1. (Cantor) By a set we are to un-
derstand any collection into a whole M of def-
inite and separate objects m of our intuition or
our thought. Notation: M = {m}.

Examples.

(1) {0, 1, 2, 3}.
(2) {}, the empty set.
(3) {(x, y) | 3x− 5y + 3 = 0}
(4) {f | f is a factor of 240}
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Definition 2.2. Two sets are equal if and only if
they contain exactly the same elements.

Example. {2, 4} = {2, 4/2, 2 · 2} = {4, 2} =
{6/3, 22}

Note. a = b means that a and b are names of the
same object.

Names contain information.

Definition 2.3. A pair (a, b) of objects a, b is
defined to be (a, b) = {{a}, {a, b}}.

Lemma 2.4. (a, b) = (a′, b′) if and only if a = a′

and b = b′.
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Set builder scheme.

S = {x ∈ U | P (x)}
“S is the set consisting of all elements x in the uni-
verse U such that the condition P (x) is satisfied.”

• {n ∈ Z | 0 ≤ n ≤ 5} = {0, 1, 2, 3, 4, 5}.
• {f ∈ N | f is a factor of 60 = 22 · 3 · 5} =
{1, 5, 3, 15, 2, 10, 6, 30, 4, 20, 12, 60}.
• {(x, y) | x2

16 + y2

9 = 1} is an ellipse in a Cartesian
coordinate system.
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What is counting?

• We know certain sets very well, e.g., sets of
fingers. We understand “more fingers”, “fewer
fingers”.
• We can compare arbitrary sets with sets of fin-

gers by matching them with sets of fingers.
• We can compare arbitrary sets with other ar-

bitrary sets and arrive at the concepts “same
size”, “more elements”, “fewer elements”. This
is the “first abstraction” according to Cantor.
• We invent “numbers” to go with our “model

sets”, e.g. a hand has five fingers. This is
the “second abstraction” according to Cantor.
There is nothing sacred or natural about the
names and symbols used for these counting num-
bers.
• Numerals and numeration schemes were devel-

oped to measure the size or count of any (finite)
set.

Definition 2.5. A set A is finite if it can be
matched with an initial segment of N, say {1, 2, . . . , n},
and if so, we say that the count of A is n. No-
tation: |A| = n.
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The arithmetic of counting numbers

• Why is 3 + 4 = 7? We take a set of three ele-
ments, say {a, b, c} and a disjoint set with
four elements, say, {d, e, f, g}, and combine
them into a new set {a, b, c, d, e, f, g} and count
to get 7. This is why 3 + 4 = 7.
• Why is 2·3 = 6? We take a set of two elements,

say {a, b} and a set with three elements, say,
{a, b, c}, and form all pairs{

(a, a) (a, b) (a, c)
(b, a) (b, b) (b, c)

}
and count to get 6. This is why 2 · 3 = 6.

Definition 2.6. Let m,n ∈ N. Choose disjoint
sets A and B such that |A| = m and |B| = n.
Then, by definition, m+n = |A∪B| and m×n =
|A × B| where A × B = {(a, b) | a ∈ A, b ∈ B},
the Cartesian Product of A and B.
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Transfinite cardinals and cardinal arithmetic

Carl Friedrich Gauss in a letter: “I protest against an
infinite quantity as an actual entity; this is never al-
lowed in mathematics. The infinite is only a manner
of speaking.”

Definition 2.7. Two sets M and N are said to
contain the same number of elements if the
elements of M and N can be matched one-to-one.
The sets are then equinumerous.

Example. N = {1, 2, 3, . . .} and its subset of squares
{12, 22, 32, . . .} are equinumerous. The matching is
given by n −→ n2, i.e., n ∈ N gets the partner n2,
and every square s gets the partner

√
s. Observed

by Galileo Galilei.

Example. Any two closed real line segments [a, b]
and [a′, b′] with a < b and a′ < b′ are equipotent.

Example. Any line segement [a, b] with a < b is
equipotent with a square or a cube.

Definition 2.8. A set M is countable if there is
a one-to-one matching of the elements of M with
the natural numbers in N. In this case the count
is ℵ0 or a.
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Definition 2.9. (Cantor) Every set M has a def-
inite “power”, which we also call its “cardinal
number”. The “cardinal” of M is the general
concept which, by means of our active faculty of
thought arises from M when we make abstraction
from the nature of its various elements and of the
order in which they are given. We denote the re-
sult of this double act of abstraction by |M |.
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• The rational numbers are countable.
• The algebraic numbers, i.e. the numbers which

are roots of polynomial equations with integer
coefficients, are countable.
• The real numbers R are not countable. Set

c = |R|.
• The idea of a one-one matching (correspon-

dence) appears implicitly for the first time.

Definition 2.10. An algebraic number is a
number that is the root of a polynomial with in-
teger coefficients. A transcendental number
is a number that is not a root of any polynomial
equation with integer coefficients.

Liouville established in 1851 that transcendental num-
bers exist. In 1874 Charles Hermite proved e to be
transcendental, Ferdinand Lindemann proved that π
is transcendental in 1882.
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Remark. A set is matched one-to-one with N
if and only if the elements can be listed in a se-
quence.

(1) Counting Q = {ab | a, b ∈ Z, b 6= 0}. It suffices
to list the fractions a

b with a, b > 0. First list
those fractions a

b with a + b = 1, then those
with a + b = 2, then a + b = 3, etc. List the
fractions a

b with a+ b = s according to the size
of the numberator. To wit:

1
1

1
2

2
1

1
3

2
2

3
1

1
4

2
3

3
2

4
1

1
5

2
4

3
3

4
2

5
1

1
6

5
4

3
4

4
3

5
2

6
1

...

(2) Polynomials anx
n + · · ·+ a1x+ a0 linearly or-

dered using N = n−1+ |an|+ · · ·+ |a1|+ |a0|.
(3) R is NOT countable: famous diagonal argu-

ment.
(4) Every subset of N is either finite or countable.
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Proof. Start with a listing of N and omit all
elements not belonging to the subset.
ℵ0 is the smallest infinite cardinal. �

(5) Addition and multiplication for arbitrary car-
dinals is defined as it was for finite cardinals,
i.e., the ordinary counting numbers.

(6) Laws of cardinal arithmetic (associative, com-
mutative, distributive, etc., hold but subtrac-
tion is tricky.).

(7) ℵ0 is the smallest transfinite cardinal.
(8) ℵ0 + 1 = ℵ0. (Hilbert’s hotel)
(9) ℵ0 + ℵ0 = ℵ0.

(10) ℵ0ℵ0 = ℵ0.
(11) A set is finite if it is not equinumerous with any

of its (proper) parts.
(12) A set is infinite if it is equinumerous with one

of its (proper) parts.
(13)
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Theorem 2.11. (Cantor) The set P(X) of all
subsets of a set X has a larger cardinality (num-
ber of elements) than the original set X.

Proof. Suppose they have the same number of ele-
ments. Let f : X → P(X) be a bijection between
X and P(X).

(1) Let D = {x ∈ X : x /∈ f (x)}.
(2) Since D is a subset of X and f is onto, D =

f (d) for some d ∈ X .
(3) Thus d ∈ f (d) iff (by (2)) d ∈ D iff (by (1))

d /∈ f (d).

This is a contradiction. �
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A problem
Let U be the set of all sets. Then, for any set X ,
|U | ≥ |X|. But |P(X)| > |U |, a contradiction.

Russel’s Paradox

S := {X | X is a set and NOT X ∈ X}.

The Continuum Hypothesis

• The set of cardinal numbers is well-ordered,
i.e. every non-void set of cardinal numbers con-
tains a smallest element.
• Is c the smallest cardinal greater than a?


