REPRESENTATIONS OF POSETS AND DECOMPOSITIONS OF TORSION-FREE ABELIAN GROUPS

DAVID ARNOLD, ADOLF MADER, OTTO MUTZBAUER, AND EBRU SOLAK

1. BACKGROUND

Motivation.

Kaplansky.

- torsion-free abelian group G = additive subgroup of a Q-vector space $V, A \leq V$.
- divisible hull $\mathbb{Q}A$ = subspace of V spanned by A. rank rk $A := \dim \mathbb{Q}A$.
- *rational group* = additive subgroup of \mathbb{Q} .
- Examples.

 $-\mathbb{Z},\mathbb{Q}.$

- For P a set of prime numbers,

 $\mathbb{Z}[P^{-1}] := \langle 1/p^n \mid p \in P, n \in \mathbb{N} \rangle.$

- $\mathbb{Z}[P_1^{-1}] \cong \mathbb{Z}[P_2^{-1}]$ if and only if $P_1 = P_2$. There are 2^{\aleph_0} nonisomorphic rational groups of this "idempotent type", but there are many more rational groups.
- A *rank-one group* is a group isomorphic with a rational group.
- Bad news #1

- A *type* is an isomorphism class of rank–one groups.
- [A] is the type of the rank-one group A. The set T of all types is a partially ordered set (poset) via [A] ≤ [B] if and only if Hom(A, B) ≠ 0.

• completely decomposable group = direct sum of rankone groups. Completely decomposable group of *finite rank*:

$$A = A_1 \oplus \cdots \oplus A_n$$
, rk $A_i = 1$.

• homogenous decomposition

$$A = \bigoplus_{\rho \in \mathrm{T}_{\mathrm{cr}}(A)} A_{\rho}, \quad A_{\rho} = A_{\rho 1} \oplus \cdots \oplus A_{\rho n_{\rho}} \neq 0.$$

• (Reinhold Baer 1940)

2. Almost Completely Decomposable Groups

(Lee Lady 1974) Almost completely decomposable group
 = torsion-free group X containing a completely decomposable
 group A of finite rank that has finite index in X.

Example 2.1.

6

$$A := \mathbb{Z}[5^{-1}]v_1 \oplus \mathbb{Z}[5^{-1}]v_2 \oplus \mathbb{Z}[7^{-1}]v_3 \oplus \mathbb{Z}[7^{-1}]v_4;$$

$$X_1 := (\mathbb{Z}[5^{-1}]v_1 \oplus \mathbb{Z}[7^{-1}]v_3) + \mathbb{Z}\frac{1}{2}(v_1 + v_3);$$

$$X_2 := (\mathbb{Z}[5^{-1}]v_2 \oplus \mathbb{Z}[7^{-1}]v_4) + \mathbb{Z}\frac{1}{3}(v_2 + v_4).$$

Basis change in the homogeneous components of A:

$$\mathbb{Z}[5^{-1}]v_1 \oplus \mathbb{Z}[5^{-1}]v_2 = \mathbb{Z}[5^{-1}](3v_1 + 2v_2) \oplus \mathbb{Z}[5^{-1}](v_1 + v_2);$$
$$\mathbb{Z}[7^{-1}]v_3 \oplus \mathbb{Z}[7^{-1}]v_4 = \mathbb{Z}[7^{-1}](3v_3 + 2v_4) \oplus \mathbb{Z}[5^{-1}](v_3 + v_4);$$
$$Y := (\mathbb{Z}[5^{-1}](3v_1 + 2v_2) \oplus \mathbb{Z}[7^{-1}](3v_3 + 2v_4)) + \mathbb{Z}\frac{1}{6}((3v_1 + 2v_2) + (3v_3 + 2v_4));$$
$$X_1, X_2, Y \text{ are indecomposable and}$$

$$X := X_1 \oplus X_2 = Y \oplus \mathbb{Z}[5^{-1}](v_1 + v_2) \oplus \mathbb{Z}[7^{-1}](v_3 + v_4).$$

Bad news #2: "pathological decompositions".

Theorem 2.2. (A.L.S. Corner 1961) Given integers $n \ge k \ge 1$, there exists a (an almost completely decomposable) group X of rank n such that for any partition $n = r_1 + \cdots + r_k$, there is a decomposition of X into a direct sum of k indecomposable subgroups of ranks r_1, \ldots, r_k respectively.

3. Regulating Subgroups and the Regulator

Definition 3.1. (Lee Lady 1974) X almost completely decomposable.

- A = regulating subgroup of X, if A is a completely decomposable subgroup of X and the index [X : A] is minimal.
- The **regulator** R(X) is the intersection of all regulating subgroups

Theorem 3.2. (Rolf Burkhardt 1984) Let X be an almost completely decomposable group. Then R(X) is a fully invariant, completely decomposable subgroup of X that has finite index in X. **Definition 3.3.** (Lee Lady 1975) G and H, torsion-free of finite rank, are **isomorphic at** p if there is an integer n prime to pand homomorphisms $f : G \to H$ and $g : H \to G$ with fg = nand gf = n. The groups G and H are **nearly isomorphic**, $G \cong_{nr} H$ if they are isomorphic at p for every prime p. **Theorem 3.4.** (David Arnold 1982) $X \cong_{nr} Y$ and $X = X_1 \oplus X_2$, then $Y = Y_1 \oplus Y_2$ for some subgroups $Y_1 \cong_{nr} X_1$ and $Y_2 \cong_{nr} X_2$.

Theorem 3.5. (Ted Faticoni and Phill Schultz 1995) The "indecomposable" decompositions of an almost completely decomposable group X with X/R(X) a primary group are unique up to near-isomorphism. Example 3.6.

$$A := \mathbb{Z}[5^{-1}]v_1 \oplus \mathbb{Z}[5^{-1}]v_2 \oplus \mathbb{Z}[7^{-1}]v_3 \oplus \mathbb{Z}[7^{-1}]v_4;$$

$$X_1 := (\mathbb{Z}[5^{-1}]v_1 \oplus \mathbb{Z}[7^{-1}]v_3) + \mathbb{Z}\frac{1}{2}(v_1 + v_3);$$

$$X_2 := (\mathbb{Z}[5^{-1}]v_2 \oplus \mathbb{Z}[7^{-1}]v_4) + \mathbb{Z}\frac{1}{3}(v_2 + v_4).$$

$$Y := (\mathbb{Z}[5^{-1}]w_1 \oplus \mathbb{Z}[7^{-1}]w_2) + \mathbb{Z}\frac{1}{6}(w_1 + w_2);$$

$$X := X_1 \oplus X_2 = Y \oplus \mathbb{Z}[5^{-1}](v_1 + v_2) \oplus \mathbb{Z}[7^{-1}](v_3 + v_4).$$

Program.

Lemma 3.7. X, Y almost completely decomposable groups. If $X \cong_{nr} Y$, then $R(X) \cong R(Y)$ and $X/R(X) \cong Y/R(Y)$.

Definition 3.8. A completely decomposable, e positive integer.

$$RFEE(A, e) := \{ X \le \mathbb{Q}A : A = R(X), eX \subseteq A \}.$$

(RFEE = "regulated finite essential extension")

4. Representations

Rigid homocyclic case (*):

- $A = A_{\tau_1} \oplus \cdots \oplus A_{\tau_n}$, anti-chain $\{\tau_i\}$, where $A_{\tau_i} \neq pA_{\tau_i}$,
- $X \in \operatorname{RFEE}(A, p^m), X/A \cong \langle g_1 \rangle \oplus \cdots \oplus \langle g_r \rangle$

where $\langle g_i \rangle \cong \mathbb{Z}/p^m\mathbb{Z}$, homocyclic regulator quotient.

Definition 4.1. $\operatorname{RH}(A, p^m) := \{X \in \operatorname{RFEE}(A, p^m) \mid (*)\}.$

Definition 4.2. A completely decomposable $\overline{}: A \to A/p^m A : \overline{a} = a + p^m A, \ \overline{A} = A/p^m A,$ $\overline{}: \operatorname{End} A \to \operatorname{End} \overline{A} \text{ induced map.}$

Definition 4.3. $X \in \operatorname{RH}(A, p^m), A = A_{\tau_1} \oplus \cdots \oplus A_{\tau_n}.$ $\overline{A} \text{ is a free } \mathbb{Z}/p^m \mathbb{Z} \text{ module}, \overline{A} = \overline{A_{\tau_1}} \oplus \cdots \oplus \overline{A_{\tau_n}}.$ **Representation of** $X \colon U_X := (\overline{A}, \overline{A_{\tau_i}}, \overline{p^m X})$ $\alpha \in \operatorname{End} U_X \Leftrightarrow \alpha \in \operatorname{End} \overline{A}, \ \alpha = (\alpha_1, \ldots, \alpha_n) \text{ with } \alpha_i \in \operatorname{End} \overline{A_{\tau_i}}$ and $\alpha(\overline{p^m X}) \subseteq \overline{p^m X}.$ **Theorem 4.4.** There is a bijective correspondence from RFEE(A, e) to (certain) representations such that

- $X \cong_{\operatorname{nr}} Y$ if and only if $U_X \cong U_Y$,
- X is indecomposable if and only if U_X is indecomposable,
- U_X is indecomposable if and only if the only idempotents in End U_X are 0 and 1.

Remark 4.5. Used that $A = \mathbb{R}(X)$ is fully invariant: $\alpha : X \to X$ restricts to $\alpha : A \to A$, induces $\overline{\alpha} : \overline{A} \to \overline{A}$.

Definition 5.1.

proper basis \mathcal{B} of \overline{A} = union of bases \mathcal{B}_i of the $\overline{A_{\tau_i}}$. $M_X = [m_{ij}] = representing matrix if$

$$p^m g_i = \sum_i \sum \{ m_{ib} b : b \in \mathcal{B}_i \}.$$

Remark 5.2. $\overline{p^m X} = \vec{\mathbb{Z}} M_X = \text{ row space of } M_X.$ Regulator Criterion. $\begin{bmatrix} 1 & 0 & 0 & \| & 0 & 0 & 0 & \| & 1 & 0 & 0 \\ 0 & 1 & 0 & \| & 0 & 0 & p & \| & 0 & 1 & 0 \\ 0 & 0 & p & \| & 0 & 1 & 0 & \| & 1 & 0 & p \\ 0 & 0 & 0 & \| & 1 & 0 & 0 & \| & 0 & 1 & p \end{bmatrix}$

6. UNBOUNDED REPRESENTATION TYPE

Recall: $\alpha \in \operatorname{End} U_X \Leftrightarrow \alpha \in \operatorname{End} \overline{A}, \ \alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i \in \operatorname{End} \overline{A_{\tau_i}}$ and $\alpha(\mathbb{Z}M_X) \subseteq \mathbb{Z}M_X$.

Theorem 6.1. Indecomposability Criterion.

- $X \in \operatorname{RH}(A, p^m)$,
- U_X , the representation of X,
- $M := M_X$ a representing matrix of X.

Assume that M^* is a right inverse of M. Let $f^2 = f \in \text{End } U_X$. Then X is indecomposable if and only if

$$Mf = MfM^*M$$

implies that f = 0 and f = 1.

Theorem 6.2. The category RH(4, p) has unbounded representation type.

18

Proof. • $A = n \times n$ matrix with coefficients in \mathbb{Z}_p such that Ax = xA implies that $x \in \{0, 1\}$,

• $X \in RH(4, p)$ with representing matrix

$$M = \begin{bmatrix} I_n & \| & 0 & \| & I_n & \| & I_n \\ 0 & \| & I_n & \| & I_n & \| & A \end{bmatrix}$$
$$M^* = \begin{bmatrix} I_n & 0 & \\ 0 & I_n \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad M^* M = \begin{bmatrix} I_n & 0 & I_n & I_n \\ 0 & I_n & I_n & A \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

•

Let $f^2 = f$ be a representation idempotent in U_X . Then, for $n \times n$ idempotent matrices a, b, c, d,

$$f = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix}, \quad Mf = \begin{bmatrix} a & 0 & c & d \\ 0 & b & c & Ad \end{bmatrix}, \quad MfM^*M = \begin{bmatrix} a & 0 & a & a \\ 0 & b & b & bA \end{bmatrix}$$

and $Mf = MfM^*M$. Then c = a = d = b and Ad = bA, hence Ab = bA and it follows that $b \in \{0, 1\}$ and that $f \in \{0, 1\}$. **Theorem 6.3.** The category RH(4, p) has unbounded representation type.

Theorem 6.4. The category $RH(3, p^3)$ has unbounded representation type.

Corollary 6.5. The category $RH(S, p^m)$ -groups with S an antichain has unbounded representation type if

- $|S| \ge 4, m \ge 1,$
- S = (1, 1, 1) and $m \ge 3$.

7. INDECOMPOSABLE $((1, 1, 1), p^m)$ -GROUPS

Theorem 7.1. For a given anti-chain of types $\{\tau_1, \tau_2, \tau_3\}$, there are, with critical typeset $\{\tau_1, \tau_2, \tau_3\}$, up to near-isomorphism one indecomposable ((1, 1, 1), p)-group in RH(3, p) with representing matrix $\begin{bmatrix}1 \\ 1 \end{bmatrix} \begin{bmatrix}1 \\ 1 \end{bmatrix} \begin{bmatrix}1 \end{bmatrix}$, and one indecomposable group with representing matrix

Theorem 7.2. A group in $RH(3, p^2)$ is indecomposable if and only if it is nearly isomorphic to a group having one of the following representing matrices $\begin{bmatrix} M_1 \parallel M_2 \parallel M_3 \end{bmatrix}$ or permutations of these.

(1) Groups with cyclic regulator quotient:
(a)
$$M_{G_{31}} = \begin{bmatrix} 1 \| 1 \| 1 \end{bmatrix}$$
, $\operatorname{rk}(G_{31}) = 3$,
one near-isomorphism class,
(b) $M_{G_{32}} = \begin{bmatrix} 1 \| 1 \| p \end{bmatrix}$, $\operatorname{rk}(G_{32}) = 3$,
three near-isomorphism classes,
(2) Groups with 2-generated regulator quotient:
(a) $M_{G_{21}} = \begin{bmatrix} 1 & \| & 0 & \| & 1 \\ 0 & \| & 1 & \| & 1 \end{bmatrix}$, $\operatorname{rk}(G_{21}) = 3$,
one near-isomorphism class,
(b) $M_{G_{22}} = \begin{bmatrix} 1 & 0 & \| & 0 & \| & 1 \\ 0 & p & \| & 1 & \| & 1 \end{bmatrix}$, $\operatorname{rk}(G_{22}) = 4$,
three near-isomorphism classes,
(c) $M_{G_{23}} = \begin{bmatrix} 1 & 0 & \| & 0 & p & \| & 1 \\ 0 & p & \| & 1 & 0 & \| & 1 \\ 0 & p & \| & 1 & 0 & \| & 1 \end{bmatrix}$, $\operatorname{rk}(G_{23}) = 5$,
three near-isomorphism classes,
(d) $M_{G_{24}} = \begin{bmatrix} 1 & 0 & \| & 0 & p & \| & 1 & 0 \\ 0 & p & \| & 1 & 0 & \| & 1 & p \\ 0 & p & \| & 1 & 0 & \| & 1 & p \end{bmatrix}$, $\operatorname{rk}(G_{24}) = 6$,
one near-isomorphism class,

(3) Groups with 3-generated regulator quotient:
(a)
$$M_{G_{31}} = \begin{bmatrix} 1 & 0 & \| & 0 & 0 & \| & 1 & 0 \\ 0 & 1 & \| & 0 & 1 & \| & 0 & 1 \\ 0 & 0 & \| & 1 & 0 & \| & 1 & p \end{bmatrix}$$
, rk(G_{31}) = 6,
one near-isomorphism class,

(4) Groups with 4-generated regulator quotient:
(a)
$$M_{G_{41}} = \begin{bmatrix} 1 & 0 & 0 & \| & 0 & 0 & 0 & \| & 1 & 0 & 0 \\ 0 & 1 & 0 & \| & 0 & 0 & p & \| & 0 & 1 & 0 \\ 0 & 0 & p & \| & 0 & 1 & 0 & \| & 1 & 0 & p \\ 0 & 0 & 0 & \| & 1 & 0 & 0 & \| & 0 & 1 & p \end{bmatrix}$$
, rk(G_{41}) = 9, one near-isomorphism class.