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1. Background

Motivation.

Kaplansky.

• torsion–free abelian group G = additive subgroup of a

Q–vector space V , A ≤ V .

• divisible hull QA = subspace of V spanned by A.

rank rkA := dim QA.

• rational group = additive subgroup of Q.

• Examples.

– Z, Q.

– For P a set of prime numbers,

Z[P−1] := 〈1/pn | p ∈ P, n ∈ N〉.

• Z[P−1
1 ] ∼= Z[P−1

2 ] if and only if P1 = P2. There are 2ℵ0 non–

isomorphic rational groups of this “idempotent type”, but there

are many more rational groups.

• A rank–one group is a group isomorphic with a rational

group.

Bad news #1
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• A type is an isomorphism class of rank–one groups.

• [A] is the type of the rank–one group A. The set T of all types

is a partially ordered set (poset) via [A] ≤ [B] if and only if

Hom(A,B) 6= 0.



4

• completely decomposable group = direct sum of rank–

one groups. Completely decomposable group of finite rank:

A = A1 ⊕ · · · ⊕ An, rkAi = 1.

• homogenous decomposition

A =
⊕

ρ∈Tcr(A)

Aρ, Aρ = Aρ1 ⊕ · · · ⊕ Aρnρ 6= 0.

• (Reinhold Baer 1940)
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2. Almost Completely Decomposable Groups

• (Lee Lady 1974) Almost completely decomposable group

= torsion–free group X containing a completely decomposable

group A of finite rank that has finite index in X .
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Example 2.1.

A := Z[5−1]v1 ⊕ Z[5−1]v2 ⊕ Z[7−1]v3 ⊕ Z[7−1]v4;

X1 := (Z[5−1]v1 ⊕ Z[7−1]v3) + Z
1

2
(v1 + v3);

X2 := (Z[5−1]v2 ⊕ Z[7−1]v4) + Z
1

3
(v2 + v4).

Basis change in the homogeneous components of A:

Z[5−1]v1 ⊕ Z[5−1]v2 = Z[5−1](3v1 + 2v2)⊕ Z[5−1](v1 + v2);

Z[7−1]v3 ⊕ Z[7−1]v4 = Z[7−1](3v3 + 2v4)⊕ Z[5−1](v3 + v4);

Y := (Z[5−1](3v1+2v2)⊕Z[7−1](3v3+2v4))+Z
1

6
((3v1+2v2)+(3v3+2v4));

X1, X2, Y are indecomposable and

X := X1 ⊕X2 = Y ⊕ Z[5−1](v1 + v2)⊕ Z[7−1](v3 + v4).

Bad news #2: “pathological decompositions”.
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Theorem 2.2. (A.L.S. Corner 1961) Given integers n ≥ k ≥

1, there exists a (an almost completely decomposable) group X

of rank n such that for any partition n = r1 + · · · + rk, there

is a decomposition of X into a direct sum of k indecomposable

subgroups of ranks r1, . . . , rk respectively.
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3. Regulating Subgroups and the Regulator

Definition 3.1. (Lee Lady 1974) X almost completely decompos-

able.

• A = regulating subgroup of X, if A is a completely de-

composable subgroup of X and the index [X : A] is minimal.

• The regulator R(X) is the intersection of all regulating

subgroups

Theorem 3.2. (Rolf Burkhardt 1984) Let X be an almost com-

pletely decomposable group. Then R(X) is a fully invariant, com-

pletely decomposable subgroup of X that has finite index in X.
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Definition 3.3. (Lee Lady 1975) G and H, torsion-free of finite

rank, are isomorphic at p if there is an integer n prime to p

and homomorphisms f : G → H and g : H → G with fg = n

and gf = n. The groups G and H are nearly isomorphic,

G ∼=nr H if they are isomorphic at p for every prime p.
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Theorem 3.4. (David Arnold 1982) X ∼=nr Y and X = X1⊕X2,

then Y = Y1 ⊕ Y2 for some subgroups Y1
∼=nr X1 and Y2

∼=nr X2.

Theorem 3.5. (Ted Faticoni and Phill Schultz 1995) The “inde-

composable” decompositions of an almost completely decompos-

able group X with X/R(X) a primary group are unique up to

near–isomorphism.
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Example 3.6.

A := Z[5−1]v1 ⊕ Z[5−1]v2 ⊕ Z[7−1]v3 ⊕ Z[7−1]v4;

X1 := (Z[5−1]v1 ⊕ Z[7−1]v3) + Z
1

2
(v1 + v3);

X2 := (Z[5−1]v2 ⊕ Z[7−1]v4) + Z
1

3
(v2 + v4).

Y := (Z[5−1]w1 ⊕ Z[7−1]w2) + Z
1

6
(w1 + w2);

X := X1 ⊕X2 = Y ⊕ Z[5−1](v1 + v2)⊕ Z[7−1](v3 + v4).

Program.
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Lemma 3.7. X, Y almost completely decomposable groups. If

X ∼=nr Y , then R(X) ∼= R(Y ) and X/R(X) ∼= Y/R(Y ).

Definition 3.8. A completely decomposable, e positive integer.

RFEE(A, e) := {X ≤ QA : A = R(X), eX ⊆ A}.

(RFEE = “regulated finite essential extension”)
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4. Representations

Rigid homocyclic case (*):

• A = Aτ1 ⊕ · · · ⊕ Aτn, anti-chain {τi}, where Aτi 6= pAτi,

• X ∈ RFEE(A, pm), X/A ∼= 〈g1〉 ⊕ · · · ⊕ 〈gr〉

where 〈gi〉 ∼= Z/pmZ, homocyclic regulator quotient.

Definition 4.1. RH(A, pm) := {X ∈ RFEE(A, pm) | (∗)}.
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Definition 4.2. A completely decomposable

: A→ A/pmA : a = a + pmA, A = A/pmA,

: EndA→ EndA induced map.

Definition 4.3. X ∈ RH(A, pm), A = Aτ1 ⊕ · · · ⊕ Aτn.

A is a free Z/pmZ module, A = Aτ1 ⊕ · · · ⊕ Aτn.

Representation of X: UX := (A,Aτi, p
mX)

α ∈ EndUX ⇔ α ∈ EndA, α = (α1, . . . , αn) with αi ∈ EndAτi

and α(pmX) ⊆ pmX.
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Theorem 4.4. There is a bijective correspondence from RFEE(A, e)

to (certain) representations such that

• X ∼=nr Y if and only if UX ∼= UY ,

• X is indecomposable if and only if UX is indecomposable,

• UX is indecomposable if and only if the only idempotents in

EndUX are 0 and 1.

Remark 4.5. Used that A = R(X) is fully invariant: α : X → X

restricts to α : A→ A, induces α : A→ A.
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5. representing matrices

Definition 5.1.

proper basis B of A = union of bases Bi of the Aτi.

MX = [mij] = representing matrix if

pmgi =
∑
i

∑
{mibb : b ∈ Bi}.

Remark 5.2. pmX = ~ZMX = row space of MX.

Regulator Criterion.


1 0 0

∣∣∣∣ 0 0 0
∣∣∣∣ 1 0 0

0 1 0
∣∣∣∣ 0 0 p

∣∣∣∣ 0 1 0

0 0 p
∣∣∣∣ 0 1 0

∣∣∣∣ 1 0 p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 1 p


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6. Unbounded representation type

Recall: α ∈ EndUX ⇔ α ∈ EndA, α = (α1, . . . , αn) with αi ∈

EndAτi and α(~ZMX) ⊆ ~ZMX .

Theorem 6.1. Indecomposability Criterion.

• X ∈ RH(A, pm),

• UX, the representation of X,

• M := MX a representing matrix of X.

Assume that M ∗ is a right inverse of M . Let f 2 = f ∈ EndUX.

Then X is indecomposable if and only if

Mf = MfM ∗M

implies that f = 0 and f = 1.

Theorem 6.2. The category RH(4, p) has unbounded represen-

tation type.
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Proof. • A = n × n matrix with coefficients in Zp such that Ax = xA

implies that x ∈ {0, 1},

• X ∈ RH(4, p) with representing matrix

M =

In ∣∣∣∣ 0
∣∣∣∣ In

∣∣∣∣ In

0
∣∣∣∣ In

∣∣∣∣ In
∣∣∣∣ A



M ∗ =


In 0

0 In

0 0

0 0

 M ∗M =


In 0 In In

0 In In A

0 0 0 0

0 0 0 0

 .
Let f 2 = f be a representation idempotent in UX . Then, for n×n idempotent

matrices a, b, c, d,

f =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

 , Mf =

a 0 c d

0 b c Ad

 , MfM ∗M =

a 0 a a

0 b b bA



and Mf = MfM ∗M . Then c = a = d = b and Ad = bA, hence Ab = bA and

it follows that b ∈ {0, 1} and that f ∈ {0, 1}. �
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Theorem 6.3. The category RH(4, p) has unbounded represen-

tation type.

Theorem 6.4. The category RH(3, p3) has unbounded represen-

tation type.

Corollary 6.5. The category RH(S, pm)-groups with S an anti-

chain has unbounded representation type if

• |S| ≥ 4, m ≥ 1,

• S = (1, 1, 1) and m ≥ 3.
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7. Indecomposable ((1, 1, 1), pm)-groups

Theorem 7.1. For a given anti-chain of types {τ1, τ2, τ3}, there

are, with critical typeset {τ1, τ2, τ3}, up to near-isomorphism one

indecomposable ((1, 1, 1), p)-group in RH(3, p) with representing

matrix
[
1
∣∣∣∣1∣∣∣∣1], and one indecomposable group with representing

matrix 1
∣∣∣∣ 0

∣∣∣∣ 1

0
∣∣∣∣ 1

∣∣∣∣ 1

 .
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Theorem 7.2. A group in RH(3, p2) is indecomposable if and

only if it is nearly isomorphic to a group having one of the fol-

lowing representing matrices
[
M1

∣∣∣∣M2

∣∣∣∣M3

]
or permutations of

these.

(1) Groups with cyclic regulator quotient:

(a) MG31 =
[
1
∣∣∣∣1∣∣∣∣1], rk(G31) = 3,

one near-isomorphism class,

(b) MG32 =
[
1
∣∣∣∣1∣∣∣∣p], rk(G32) = 3,

three near-isomorphism classes,

(2) Groups with 2-generated regulator quotient:

(a) MG21 =

1
∣∣∣∣ 0

∣∣∣∣ 1

0
∣∣∣∣ 1

∣∣∣∣ 1

, rk(G21) = 3,

one near-isomorphism class,

(b) MG22 =

1 0
∣∣∣∣ 0

∣∣∣∣ 1

0 p
∣∣∣∣ 1

∣∣∣∣ 1

, rk(G22) = 4,

three near-isomorphism classes,

(c) MG23 =

1 0
∣∣∣∣ 0 p

∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

, rk(G23) = 5,

three near-isomorphism classes,

(d) MG24 =

1 0
∣∣∣∣ 0 p

∣∣∣∣ 1 0

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1 p

, rk(G24) = 6,

one near-isomorphism class,
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(3) Groups with 3-generated regulator quotient:

(a) MG31 =


1 0

∣∣∣∣ 0 0
∣∣∣∣ 1 0

0 1
∣∣∣∣ 0 1

∣∣∣∣ 0 1

0 0
∣∣∣∣ 1 0

∣∣∣∣ 1 p

, rk(G31) = 6,

one near-isomorphism class,

(4) Groups with 4-generated regulator quotient:

(a) MG41 =


1 0 0

∣∣∣∣ 0 0 0
∣∣∣∣ 1 0 0

0 1 0
∣∣∣∣ 0 0 p

∣∣∣∣ 0 1 0

0 0 p
∣∣∣∣ 0 1 0

∣∣∣∣ 1 0 p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 1 p

, rk(G41) = 9,

one near-isomorphism class.


