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1. BACKGROUND

Motivation.

Kaplansky.

e torsion—free abelian group G = additive subgroup of a
Q—vector space V, A < V.
o divisible hull QA = subspace of V' spanned by A.
rank rk A .= dim QA.
e rational group = additive subgroup of Q.
e Examples.
— 7, Q.

— For P a set of prime numbers,
Z[P7Y = (1/p" | p€ P,n €N).

o Z[P '] & Z[P, '] if and only if P, = P,. There are 2% non-
isomorphic rational groups of this “idempotent type”, but there
are many more rational groups.

e A rank—one group is a group isomorphic with a rational
group.

Bad news #1



e A type is an isomorphism class of rank—one groups.

e [A] is the type of the rank—one group A. The set T of all types
is a partially ordered set (poset) via [A] < [B] if and only if
Hom(A, B) # 0.



e completely decomposable group = direct sum of rank-

one groups. Completely decomposable group of finite rank:
A=A®---® A, 1kA =1
e homogenous decomposition

A= P A4, A=A4,0 - DAy, #0.
pE€Ter(A)

e (Reinhold Baer 1940)



2. ALMOST COMPLETELY DECOMPOSABLE (GROUPS

e (Lee Lady 1974) Almost completely decomposable group
= torsion—free group X containing a completely decomposable

group A of finite rank that has finite index in X.



6

Example 2.1.
A = Z5 o @ Z5 v, ® Z[7 v @ Z[7 Yuy;
X, = (Z5 Yo @ Z[7T us) + Z%(m + v3);
X, = (Z5 Yo, ® Z[7uy) + z%@z L)
Basis change in the homogeneous components of A:
Z[5 Moy @ Z[5 vy = Z[5 7 (3u1 4 2v2) ® Z[5 (1 + v2);

Z[7 v ® Z[7 vy = Z[77Y(3vs + 204) B Z[5 ] (vs + vy);
Y = (2[5_1](31)14—21)2)@2[7_1](3U3+QU4))+Zé((3@1+202)+(303—|—2U4));

X1, Xo, Y are indecomposable and
X =X0Xo =Y ®ZE (v +v2) ® Z[7T (w5 + vy).

Bad news #2: “pathological decompositions”.
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Theorem 2.2. (A.L.S. Corner 1961) Given integers n > k >
1, there exists a (an almost completely decomposable) group X
of rank n such that for any partition n = r1 + --- + ry, there
1s a decomposition of X wnto a direct sum of k indecomposable

subgroups of ranks r1, ..., r; respectively.



3. REGULATING SUBGROUPS AND THE REGULATOR

Definition 3.1. (Lee Lady 1974) X almost completely decompos-
able.

e A = regulating subgroup of X, if A is a completely de-

composable subgroup of X and the index | X : Al is minimal.

e The regulator R(X) is the intersection of all requlating

subgroups

Theorem 3.2. (Rolf Burkhardt 1984) Let X be an almost com-
pletely decomposable group. Then R(X) is a fully invariant, com-
pletely decomposable subgroup of X that has finite index in X.
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Definition 3.3. (Lee Lady 1975) G and H, torsion-free of finite
rank, are tsomorphic at p if there is an integer n prime to p
and homomorphisms f : G — H and g : H — G with fg = n
and gf = n. The groups G and H are nearly itsomorphic,

G = H iof they are isomorphic at p for every prime p.
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Theorem 3.4. (David Arnold 1982) X =, Y and X = X; @ Xo,
then Y =Y @Yy for some subgroups Y1 =, X1 and Yy =, Xo.

Theorem 3.5. (Ted Faticoni and Phill Schultz 1995) The “inde-
composable” decompositions of an almost completely decompos-
able group X with X/R(X) a primary group are unique up to

near—isomorphism.
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Example 3.6.
A = Z[5 o @ Z[5 v, ® Z[7 Y us @ Z[7 us;

X, = (Z[5 Yo @ Z[7T us) + Z%(m + v3);
X, = (Z5 Yo, ® Z[7uy) + z%@z L)

Y = (Z[5 w, @ Z[7T w,) + Zé(wl + wy);

X =X10Xo=Y BZE (v, +v3) ®Z[T (v + 1y).

Program.
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Lemma 3.7. X, Y almost completely decomposable groups. If
X =,Y, then R(X)=ZR(Y) and X/R(X) = Y/R(Y).

Definition 3.8. A completely decomposable, e positive integer.
RFEE(A,e) ={X <QA: A=R(X),eX C A}

(RFEE = ‘“regulated finite essential extension”)
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4. REPRESENTATIONS

Rigid homocyclic case (*):
e A=A, @ - @A, anti-chain {7;}, where A, # pA,,
e X € RFEE(A, p"), X/A = (g) & - & {g;)

where (g;) = Z/p™Z, homocyclic regulator quotient.

Definition 4.1. RH(A,p") := {X € RFEE(A,p™) | (%)}.
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Definition 4.2. A completely decomposable
T A AlpmAa=a+pmA, A= A/p"A,
— :End A — End A induced map.

Definition 4.3. X € RH(A,p™), A=A, & ---B A,

A is a free Z)p"™Z module, A=A, & & A,
Representation of X: Ux = (A, A, p"X)

a € EndUy & a € End A, a = (o, ...,q,) with a; € End A,
and a(pmX) C pmX.
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Theorem 4.4. There is a bijective correspondence from RFEE(A, e)
to (certain) representations such that

o X =Y if and only if Ux = Uy,

e X is indecomposable if and only if Ux is indecomposable,

e Ux 1s indecomposable if and only if the only idempotents in

EndUx are O and 1.

Remark 4.5. Used that A = R(X) is fully invariant: o« : X — X

restricts to a : A — A, induces @ : A — A.
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5. REPRESENTING MATRICES

Definition 5.1.

proper basis B of A = union of bases B; of the A_TZ

My = [mj;] = representing matriz if
p"g; = Z Z{mibb b€ B;}.

Remark 5.2. p" X = ZMX = row space of Mx.

Regulator Criterion.

100
010
00 p

000

000
00 p
010
100

100_
010
1 0p
01p
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6. UNBOUNDED REPRESENTATION TYPE

Recall: o € EndUx < a € End A4, o = (a1, ..., ) With a; €
End A4, and a(ZMy) C ZMy.

Theorem 6.1. Indecomposability Criterion.

e X € RH(A,p™),

e Ux, the representation of X,

o M = Mx a representing matriz of X.
Assume that M* is a right inverse of M. Let f> = f € EndUx.
Then X is indecomposable if and only if

Mf=MfM*M

implies that f =0 and f = 1.

Theorem 6.2. The category RH(4,p) has unbounded represen-
tation type.
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Proof. e A = n X n matrix with coefficients in Z, such that Az = zA

implies that x € {0, 1},

e X € RH(4,p) with representing matrix

R U e O
0 | | 1. | 4

I, 0 I, 0 I, I

0 I, 0 I, I, A
M* = M*M =

0 0 00 0 0

0 0 00 0 0

Let f2 = f be a representation idempotent in Ux. Then, for n x n idempotent

matrices a, b, c, d,

a 00 0

0b 0O a 0 ¢ d a 0 a a
f= , Mf= , MfM*M =

0 0cO 0 b ¢ Ad 0 b b bA

00O0d

and Mf=MfM*M. Then c =a =d=>band Ad = bA, hence Ab = bA and
it follows that b € {0,1} and that f € {0, 1}. O
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Theorem 6.3. The category RH(4,p) has unbounded represen-
tation type.

Theorem 6.4. The category RH(3,p?) has unbounded represen-
tation type.

Corollary 6.5. The category RH(S, p™)-groups with S an anti-
chain has unbounded representation type if

o |S| >4, m>1,

e S=(1,1,1) and m > 3.
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7. INDECOMPOSABLE ((1,1,1),p™)-GROUPS
Theorem 7.1. For a given anti-chain of types {71, 72, T3}, there
are, with critical typeset {1, 7o, T3}, up to near-isomorphism one
indecomposable ((1,1,1), p)-group in RH(3,p) with representing
matric [1”1”1}, and one indecomposable group with representing

matrix
Lfofn
0 11
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Theorem 7.2. A group in RH(3,p?) is indecomposable if and
only if it 1s nearly isomorphic to a group having one of the fol-
lowing representing matrices [Ml || M, H Mg} or permutations of

these.

(1) Groups with cyclic requlator quotient:
(2) May, = [1]1]1], (Gar) =3,
one near-isomorphism class,
(b) May, = [1[1]p], tk(Ga) =3
three near-isomorphism classes,

(2) Groups with 2-generated requlator quotient:

R
(a) Go1 — y T ( 21) — 3;
0 v
one near-isomorphism class,
1o o]1
(b) Mgy, = , tk(Gag) = 4,
0p | 11
three nea}’—isom()rphism classes,
1O O0Op | 1
(c) Mgy = , tk(Ga3) = 5,
0 p 10 1
three nea}—z’somarphz’sm classes,
10| O0Op | 10
() Moy, = k(Gar) = 6,
Op | 10 1 p

one near-isomorphism class,
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(3) Groups with 3-generated regulator quotient:

(a) Mg, =

one near-isomorphism class,

10
01
00

00
01
10

10
01

L p

’ rk(G31) - 67

(4) Groups with 4-generated regulator quotient:

(a) Mg, =

100
010
00 p
000

000
00 p
010
100

one near-isomorphism class.

100
010
1 0p
01p

s l“k(G41) = 9,




