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Monday, 4 January 2016

9.45 Opening

9.50 Linda Westrick (Victoria University of Wellington)
Seas of squares with sizes
from a co-enumerable set

10.40 Coffee Break

11.10 Valentina Harizanov (George Washington University)
Degrees of the isomorphism
types of structures

11.40 Jake Pardo (Pennsylvania State University)
Gambling Against Some Odds

12.10 Lunch Break

14.00 Lance Fortnow (Georgia Tech)
Tutorial I
Bounding rationality with computation

14.50 Adam Case (Iowa State University)
Turing Reductions and
Data Processing Inequalities for Sequences

15.20 Coffee

15.50 Hayato Takahashi (Gifu University)
An example of non-computable conditional probability
for generalized Lambalgen’s theorem
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Tuesday, 5 January 2016

9.10 Uri Andrews (University of Wisconsin, Madison)
Connections between Computation and Geometry

10.00 Coffee Break

10.30 Satyadev Nandakumar (Indian Inst. of Tech., Kanpur)
Pseudorandomness and dimension

11.30 Rodney G. Downey (Victoria University of Wellington)
A minimal degree computable from a weakly 2-generic one

12.00 Lunch Break

14.00 Lance Fortnow (Georgia Tech)
Tutorial II

14.50 Jeffrey O. Shallit (University of Waterloo)
Separating Words
With Automata

15.40 Coffee

8



Wednesday, 6 January 2016

9.10 Cristóbal Rojas (Universidad Andrés Bello, Chile)
Computability and complexity of random
perturbations of dynamical systems

10.00 Coffee Break

10.30 Benoit Monin (Paris Créteil)
A unifying approach to the Gamma question

11.00 Gregory Igusa (University of Notre Dame)
Generic computability and coarse computability

11.30 Lance Fortnow (Georgia Institute of Technology)
Tutorial III

Free Afternoon
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Thursday, 7 January 2016

9.10 Ron Peretz (Bar-Ilan University, Israel)
Effective martingales with restricted wagers

10.00 Coffee Break

10.30 Rutger Kuyper (University of Wisconsin–Madison)
Preservation of randomness and genericity
under symmetric differences

11.30 Wolfgang Merkle (University of Heidelberg, Germany)
Being low for K along sequences and elsewhere

12.00 Lunch Break

14.00 Rupert Hölzl (National University of Singapore)
Randomness for Computable Measures
and Initial Segment Complexity

14.30 Dan Turetsky (Victoria University of Wellington)
The complexity of free abelian groups

15.20 Coffee Break

15.50 Mariya Soskova (Sofia University)
Definability and automorphisms
in the enumeration degrees
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Friday, 8 January 2016

9.30 Andrew Bridy (University of Rochester)
Automatic Sequences and
Curves over Finite Fields

10.00 Kohtaro Tadaki (Chubu University)
The Principle of Typicality

10.30 Coffee Break

11.00 Lance Fortnow (Georgia Tech)
Public Talk

11.50 Group photo

12.20 Sandwiches
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Uri Andrews

Connections Between Computation and Geometry

Abstract: The spectrum problem in computable model theory is to determine which
sets S ⊆ ω + 1 can occur as Spec(T ), the set of dimensions of recursive models of T ,
for some strongly minimal theory T . Though we know very little about the spectrum
problem in general, we now have a far better understanding in the case where T has
an understandable geometry.

Andrew Bridy

Automatic Sequences and Curves over Finite Fields

Abstract: A theorem of Christol states that a power series y over the finite field
Fq is an algebraic function if and only if its coefficient sequence can be produced by
a finite automaton that reads the base-q expansions of positive integers. The proof
uses combinatorics and linear algebra, but hidden in the theorem there is geometric
information about a curve that contains y in its function field. I make this explicit
by demonstrating a precise link between the complexity of the automaton and the
geometry of the curve.
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Adam Case

Turing Reductions and Data Processing Inequalities for Sequences

Abstract: A data processing inequality states that the quantity of shared infor-
mation between two entities (e.g. signals, strings) cannot be significantly increased
when one of the entities is processed by certain kinds of transformations. Various
branches of information theory have developed their own data processing inequali-
ties. For example, if f ∶ {0,1}∗− > {0,1}∗ is a computable function, then there is a
constant c such that, for all strings x, y ∈ {0,1}∗,

I(f(x) ∶ y) ≤ I(x ∶ y) + c,

where I(x ∶ y) = K(y) − K(y ∣ x) is the algorithmic mutual information between
x and y, and K(y) and K(y ∣ x) are the Kolmogorov complexity of y and the
conditional Kolmogorov complexity of y given x, respectively [3]. However, there
are settings within algorithmic information theory that do not have known data
processing inequalities.

In this talk, we discuss new data processing inequalities for sequences where trans-
formations are represented by Turing reductions. To measure the shared information
between two sequences, we use a recent advancement in constructive dimension called
mutual dimension [1]. Formally, the mutual dimension between two sequences S and
T is defined by

mdim(S ∶ T ) = lim inf
n→∞

I(S[0..n − 1] ∶ T [0..n − 1])
n

.

Intuitively, this is the density of algorithmic mutual information between S and T
[2]. We show how adjustments to the computable bounds on the use function of a
Turing reduction will yield different data processing inequalities.

[1] Adam Case and Jack H. Lutz. Mutual dimension. ACM Transactions on Com-
putation Theory, 7(12): 1-26, 2015.
[2] Adam Case and Jack H. Lutz. Mutual dimension and random sequences. In
Proceedings of the Fortieth International Symposium on Mathematical Foundations
of Computer Science, Part II, pages 199-210. Springer, 2015.
[3] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, third edition, 2008.
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Rodney G. Downey

A minimal degree computable from a weakly 2-generic one

Joint work with Satyadev Nandakumar.

Abstract: We prove that such objects exist, solving a question of Barmpalias and
Lewis-Pye. The result is right on the edge of what is possible since Jockusch proved
that 2-generics are downward dense below degrees below 2-generics. Moreover, any
weakly 2-generic degree will form a minimal pair with 0′. Thus, whilst the con-
struction is a full approximation one, both degrees will be in ∆0

3 −∆0
2, causing some

complexity.

Lance Fortnow

Bounding rationality with computation

Abstract: Traditional microeconomic theory treats individuals and institutions as
completely understanding the consequences of their decisions given the information
they have available. These assumptions might require these agents to solve hard
computational problems to optimize our choices. What happens if we restrict the
computational power of economic agents?

There has been some work in economics treating computation as a fixed cost or
simply considering the size of a program. This series of talks, based on the work
of the speaker and others, will explore a new direction bringing the rich tools of
computability and computational complexity into economic models.

We show how to incorporate computability and computational complexity into
a number of economic models including game theory, prediction markets, forecast
testing, preference revelation and awareness. We will suggest a number of further
directions worth exploring.

We will not assume any background in economics or computational complexity.
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Valentina Harizanov

Degrees of the isomorphism types of structures

Abstract: The Turing degree spectrum of a countable structure A is the set of all
Turing degrees of the isomorphic copies of A. Knight proved that the degree spectrum
of a structure is closed upwards, unless the structure is automorphically trivial,
in which case the degree spectrum consists of a single Turing degree. Hirschfeldt,
Khoussainov, Shore, and Slinko established that for every automorphically nontrivial
structure A, there is a symmetric irreflexive graph, a partial order, a lattice, a ring,
an integral domain of arbitrary characteristic, a commutative semigroup, or a 2-step
nilpotent group the degree spectrum of which coincides with the degree spectrum of
A.

Jockusch and Richter defined the degree of the isomorphism type of a structure
A to be the least Turing degree in the degree spectrum of A. Such degrees may not
exist. For example, Richter showed that linear orders and trees without computable
isomorphic copies do not have degrees of their isomorphism types. A.N. Khisamiev
established the same result for abelian p-groups. Richter also introduced a general
combination method for building structures the isomorphism types of which have
arbitrary Turing degrees. As a corollary, she showed that there is an abelian torsion
group with an arbitrary degree of its isomorphism type. We will show how Richter’s
combination method can be extended. We will present some recent results on the
degrees of the isomorphism types of structures of interest in algebra, geometry, and
low-dimensional topology. These results are obtained in collaboration with different
groups of researchers.
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Rupert Hölzl

Randomness for Computable Measures and Initial Segment Com-
plexity

Joint work with Christopher P. Porter (http://arxiv.org/abs/1510.07202).

Abstract: The Levin-Schnorr theorem establishes the equivalence of a certain
measure-theoretic notion of typicality for infinite sequences (known as Martin-Löf
randomness) with a notion of incompressibility given in terms of Kolmogorov com-
plexity. Although the Levin-Schnorr theorem is usually formulated for sequences
that are random with respect to the Lebesgue measure on 2ω, it is well known that
the theorem can be generalized to hold for any computable probability measure on
2ω. More specifically, a sequence X ∈ 2ω is Martin-Löf random with respect to a com-
putable measure µ if and only if the initial segment complexity of X ↾ n is bounded
from below by − logµ(X ↾ n). Thus we see that certain values of the measure µ
constrain the possible values of the initial segment complexities of the µ-random
sequences.

In this study, we further explore the interaction between computable measures
and the initial segment complexity of the sequences that are random with respect
to these measures (hereafter, we will refer to those sequences that are random with
respect to a computable measure as proper sequences, following the terminology of
Zvonkin and Levin [4]). We focus in particular on the growth rates of functions of
the form f(X,n) = − logµ(X ↾ n) for various computable measures µ and µ-random
sequences X. As we demonstrate, these growth rates can vary widely, depending on
the choice of the underlying measure µ.

In the first half of the paper, we focus on the relationship between a class of
sequences known as complex sequences and those sequences that are random with
respect to a computable, continuous measure. First studied systematically by Kjos-
Hanssen et al. [1] (but also studied earlier by Kanovič [2]), complex sequences are
those sequences whose initial segment complexities are bounded below by some com-
putable function. We characterize the complex proper sequences as the sequences
that are random with respect to some computable continuous measure. This is
done by studying the “removability” of µ-atoms, that is, sequences X such that
µ({X}) > 0. We show that if a sequence X is complex and random with respect to
some computable measure µ, we can define a computable, continuous measure ν such
that X is random with respect to ν by removing the µ-atoms that are in some sense
near X. It is natural to ask whether this removal of atoms can always be carried out
while preserving all non-atomic random sequences simultaneously, again assuming
that all of these random sequences are complex. We show that this is not the case.

Using this characterization of complex sequences through computable continuous
measures, we establish new results on the relationship between the notions of avoid-
ability, hyperavoidability, semigenericity, and not being random for any computable,
continuous measure. More specifically, when restricted to the collection of proper
sequences, we show that these four notions are equivalent to being complex. We
also study the granularity of a computable, continuous measure µ and show that
the inverse of the granularity function provides a uniform lower bound for the initial
segment complexity of µ-random sequences.
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In the second half of the paper, we turn our attention to atomic computable
measures, i.e., computable measures µ that have µ-atoms. First, we study atomic
measures µ with the property that every µ-random sequence is either a µ-atom or
is complex. We show that for such measures µ, even though the initial segment
complexity of each non-atom µ-random sequence is bounded from below by some
computable function, there is in general no uniform computable lower bound for every
non-atom µ-random sequence. Next, we construct a computable atomic measure µ
with the property that the initial segment complexity of each µ-random sequence
dominates no computable function, and a computable atomic measure ν with the
property that the initial segment complexity of each ν-random sequence is dominated
by all computable functions. The former sequences are called infinitely often anti-
complex, while the latter are known simply as anti-complex.

Lastly, we study two specific kinds of atomic measures: diminutive measures and
trivial measures. Here, a measure µ is trivial if µ(Atomsµ) = 1, and diminutive
measures are defined as follows.

Let C ⊆ 2ω.

(i) C is diminutive if it does not contain a computably perfect subclass.

(ii) Let µ be a computable measure, and let (Ui)i∈ω be the universal µ-Martin-Löf
test. Then we say that µ is diminutive if Uci is a diminutive Π0

1 class for every
i.

We show that while every computable trivial measure is diminutive, the converse
does not hold. The proof of this last statement gives an alternative, priority-free
proof of the following known result.

Corollary (Kautz [3]). There is a computable, non-trivial measure µ such that there
is no ∆0

2, non-computable X ∈ MLRµ.

[1] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov com-
plexity and the recursion theorem. Trans. Amer. Math. Soc. 363 (2011), no. 10,
5465–5480.
[2] Max I. Kanovič. The complexity of the enumeration and solvability of predicates.
Dokl. Akad. Nauk SSSR 190 (1070), 23–26.
[3] Steven M. Kautz. Degrees of random sets. PhD thesis, Cornell University, 1991.
[4] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects
and the basing of the concepts of information and randomness on the theory of
algorithms. Uspehi Mat. Nauk 25(6(156)):85– 127, 1970.
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Gregory Igusa

Generic computability and coarse computability

Joint work with Peter Cholak and Rod Downey.

Abstract: In 2012, Jockusch and Schupp introduced “generic computability” and
“coarse computability” the recursion-theoretic content of algorithms that are only
able to compute most of the bits of a real. A generic computation of a real is
a computation that usually halts: a partial recursive function whose domain has
density 1 (in the sense of asymptotic density on N) such that the partial recursive
function correctly computes the real on its domain. Similarly, a coarse computation
is a computation that is usually correct: a total recursive function that is correct
about the real on density 1.

To many people, at first glance it would appear that one of these two notions
should imply the other. Perhaps a generically computable real should also be coarsely
computable by an algorithm that guesses when it does not know the answer, or a
coarsely computable real should also be generically computable by an algorithm that
does not guess when it does not know the answer. Neither of these two implications
is true, but from the work various people have done on these two notions, there is a
large quantity of evidence suggesting that the first implication is “almost” true.

This “almost implication” can be witnessed by many standards of measurement:
The Turing degrees that contain an element that is computable in one sense but not
the other, the densities other than 1 at which a real can be generically or coarsely
approximated, the Turing information coded in an arbitrary coarse (resp. generic)
description of a generically (resp. coarsely) computable real, and an implication
between two other analogously defined degree structures.

In recent work, many of these “almost implications” have been used to transport
theorems back and forth between generic reducibility and coarse reducibility, pro-
ducing a situation in which the distinction between defining reducibilities uniformly
vs nonuniformly turns out to be more relevant than the distinction between generic
and coarse computability.
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Rutger Kuyper

Preservation of randomness and genericity under symmetric dif-
ferences

Joint work with Joseph S. Miller.

Abstract: Given a class U of subsets of the natural numbers, let us say that a
subset A of the natural numbers is U-stabilising if the symmetric difference (or
bitwise addition) A +X of A and X is an element of U for every element X of U .

Several people have asked, using varying terminology, to characterise the Martin-
Löf-stabilising sets, i.e. the sets A such that X +A is Martin-Löf random for every
Martin-Löf random set X. We show that the Martin-Löf-stabilising sets are exactly
the K-trivial sets.

We also show that the 1-generic-stabilising sets are exactly the computable sets,
using an argument which (surprisingly) makes use of Kolmogorov complexity and
facts about the K-trivial sets.
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Wolfgang Merkle

Being low for K along sequences and elsewhere

Joint work with Liang Yu.

Abstract: Given a set D of strings, say a sequence X is low for prefix-free Kol-
mogorov complexity K on D in case access to X as an oracle does not improve the
prefix-free complexity of any string in D by more than an additive constant. Fur-
thermore, say X is weakly low for K on D in case X is low for K on some, then
necessarily infinite, subset of D. The usual notions of being low for K and being
weakly low for K are obtained by letting D be equal to the set of all strings. We
investigate into the question what can be said about sequences that are low for K
or weakly low for K on specific sets of strings, e.g., on the set of initial segments of
some sequence. Accordingly, say X is low or weakly low for K along a sequence A in
case X is low or weakly low, respectively, for K on the set of initial segments of A.
More specifically, for an infinite subset I of the natural numbers, say X is low or
weakly low for K along A on I in case X is low or weakly low, respectively, for K
on the set of initial segments of A with length in I.

Among others, we demonstrate the following results. If a sequence X is not low
for K, then for any sequence A and any infinite computable set I, the sequence X is
not low along A on I. As an immediate corollary, a sequence X is low for K if and
only if X is low along all sequences on all infinite computable sets if and only if X
is low along some sequence on some infinite computable set. Furthermore, in case
a sequence X is weakly low for K, then X is weakly low along almost all sequences
(in the sense of Lebesgue measure). Hence X is weakly low for K if and only if X
is weakly low for K along almost all sequences if and only if X is weakly low for K
along some sequence. Finally, for any infinite set D of strings, the set of sequences X
such that X is low for K on D has measure 0 whereas the set of sequences X such
that X is weakly low for K on D has measure 1
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Benoit Monin

A unifying approach to the Gamma question

Abstract: The Gamma question was formulated by Andrews et al. in “Asymptotic
density, computable traceability and 1-randomness” (1). It is related to the recent
notion of coarse computability which stems from complexity theory. The Gamma
value of an oracle set measures to what extent each set computable with the oracle is
approximable in the sense of density by a computable set. The closer to 1 this value
is, the closer the oracle is to being computable. This notion has been extended in (1)
to Turing degrees. The authors of (1) provided examples of degrees with a Gamma
value of 0, some with a Gamma value of 1/2, and they showed that the computable
degree is the only one with a Gamma value larger than 1/2 (its Gamma value being
1). We will present various results unifying the known examples of degrees with a
Gamma value of 0 and 1/2, highlighting some new connections between these notions
and algorithmic randomness.

Satyadev Nandakumar

Pseudorandomness and Dimension

Joint work with Manindra Agrawal, Diptarka Chakraborty and Debarati Das.

Abstract: In computational complexity theory, a probability distribution on a finite
set of finite strings is said to be pseudorandom if no polynomial-size circuit is able
to distinguish it from the uniform distribution on the same set. In this talk, we give
an overview of a recent attempt to apply the theory of effective fractal dimension to
define how close an arbitrary distribution is to being pseudorandom and relate it to
known computational analogues of entropy. We also study the problem of whether
it is possible to extract pseudorandom bits from a general distribution, analogous to
the problem of extracting random bits from a pseudorandom source.
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Jake Pardo

Gambling against some odds

Abstract: In their paper Gambling Against All Odds, Bavly and Peretz [1] compare
the relative strengths of martingales that take their values from (potentially) different
sets of real numbers, i.e. restricted value martingales. The area of restricted value
martingales has been studied before; for example in Bienvenu et al. [2], Chalcraft,
Dougherty, et al. [3], Peretz [4], and Teutsch [5]. A restricted value martingale is
defined in the following way:

Definition. Let S ⊆ R+; an S-martingale is any martingale M that satisfies

∣M(σ1) −M(σ)∣ ∈ S

for all σ ∈ 2<N.

Recall that the success set of a martingale M is

succ(M) = {X ∈ 2N ∶ lim
n→∞M(X ↾ n) =∞}.

Then we can define the following:

Definition. Let A,B ⊆ R+.

• B singly anticipates A if for every A-martingale X, there exists a B-martingale
Y such that

succ(X) ⊆ succ(Y ).

Otherwise we say A singly evades B.

• B (countably) anticipates A if for every A-martingale X, there exists a count-
able set of B-martingales {Y1, Y2, . . .} such that

succ(X) ⊆ ⋃
i∈N
succ(Yi).

Otherwise we say A (countably) evades B.

In their recent paper Bavly and Peretz [1] proved the following two results:

Theorem (Bavly/Peretz). Let A,B ⊆ R+ be such that supA < ∞ and 0 /∈ B ∖ {0};
then B anticipates A if and only if A scales into B, i.e. there is an r ∈ R+ such that
rA ⊆ B.

Theorem (Bavly/Peretz). Let A,B ⊆ R+, and assume B is well-ordered; then B
anticipates A if and only if A scales into B.

Bavly and Peretz asked what can be shown in the case that 0 is an accumulation
point of B. In this paper, the following result is shown.

Theorem. Let A = N and B = {x−n ∶ n ∈ Z} for x ∈ R+ with x > 1+√5
2 ; then A singly

evades B.
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The proof is based on a betting game between two gamblers, gambler 1 using an
A-martingale as a strategy and gambler 2 using a B-martingale, in which a strategy
for the A-martingale gambler is produced. At the beginning of each stage of the
strategy, if gambler 2 makes a relatively large bet, gambler 1 is able to punish their
greedy play by taking both players down a punishing path of gambling, and if gambler
2 makes a relatively small bet, then gambler 1 is able to gain money at an appreciably
faster rate than gambler 2 by taking both players along a route that rewards both
gamblers (but gambler 1 moreso). This method shows some interesting connection
to number theory, in particular, the n-Fibonacci numbers.

[1] Bavly and Peretz. How to gamble against all odds. Games and Economic Behav-
ior 2014.
[2] Bienvenu, Stephan, and Teutsch. How Powerful Are Integer-Valued Martingales?
Theory of Computing Systems 51 (2012), no. 3, 330–351.
[3] Chalcraft, Dougherty, Freiling, and Teutsch. How to Build a Probability-Free
Casino. Information and Computation 211 (2012), 160–164.
[4] Peretz. Effective Martingales with Restricted Wagers. On arxiv 2013.
[5] Teutsch. A Savings Paradox for Integer-Valued Gambling Strategies. Interna-
tional Journal of Game Theory 2013.
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Ron Peretz

Effective martingales with restricted wagers

Abstract: The classic model of computable randomness considers martingales that
take real or rational values. Recent work shows that fundamental features of the
classic model change when the martingales take integer values. We compare the
prediction power of martingales whose wagers belong to three different subsets of
rational numbers:

(a) all rational numbers,

(b) rational numbers excluding a punctured neighborhood of 0, and

(c) integers.

We also consider three different success criteria:

(i) accumulating an infinite amount of money,

(ii) consuming an infinite amount of money, and

(iii) making the accumulated capital oscillate.

The nine combinations of (a)–(c) and (i)–(iii) define nine variants of computable
randomness. We provide a complete characterization of the relations between these
notions, and show that they form five linearly ordered classes.

Cristóbal Rojas

Computability and complexity of random perturbations of dynami-
cal systems

Joint work with M. Braverman and J. Schneider.

Abstract: A discrete-time dynamical system is specified by a function f from a
space X to itself. One of the most important problems in the study of dynamical
systems is to understand the limiting or asymptotic behavior of such systems; in
particular, the limiting distribution of the sequence of iterates

x, f(x), f(f(x)), . . .

Combinations of such distributions give rise to the invariant measures of the system,
which describe the asymptotic behavior in statistical terms. In this talk we will
discuss recent results on computability and complexity of such invariant measures.
In particular, we will present tight bounds on the space-complexity of computing
the ergodic measure of a low-dimensional discrete-time dynamical system, affected
by Gaussian random perturbations.
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Jeffrey O. Shallit

Separating Words Using Automata

Abstract: One of the simplest and most mysterious problems in automata theory
is the problem of separating words: given two words x, w of length at most n, deter-
mine a good bound on the number of states needed in the smallest finite automaton
accepting one of {x,w} and rejecting the other. The upper and lower bounds cur-
rently known for this problem are widely separated. In this talk I will survey what
is known about the problem.

Mariya Soskova

Definability and automorphisms in the enumeration degrees

Abstract: I will describe the connection between two problems in the structure of
the enumeration degrees. The first one concerns the existence of nontrivial automor-
phisms of the structure. The second one is to understand what relations on degrees
are first order definable in the language of the structure. I will outline what we know
about definability in the enumeration degrees and finish with some open problems
and possible future directions of research.

Kohtaro Tadaki

The Principle of Typicality

Abstract: This is a sequel to our presentation at CCR 2014. The notion of probabil-
ity plays a crucial role in quantum mechanics. It appears as the Born rule. In modern
mathematics which describes quantum mechanics, however, probability theory means
nothing other than measure theory, and therefore any operational characterization
of the notion of probability is still missing in quantum mechanics. At CCR 2014 we
presented an alternative rule to the Born, using the notion of Martin-Löf random-
ness with respect to Bernoulli measure for specifying the property of the results of
quantum measurements in an operational way. This alternative rule is about pure
states. In this talk we generalize this alternative rule over mixed states. We then
show that all of our new rules about quantum measurements based on algorithmic
randomness, including the alternative rule to the Born rule about pure states and its
generalization over mixed states, can be derived from a single postulate, called the
principle of typicality, in a unified way.
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Hayato Takahashi

An example of non-computable conditional probability for general-
ized Lambalgen’s theorem

Abstract: Lambalgen’s theorem (1987) [6] says that a pair of sequences (x∞, y∞) ∈
Ω2 is Martin-Löf (ML) random w.r.t. the product of uniform measures iff x∞ is ML-
random and y∞ is ML-random relative to x∞, where Ω is the set of infinite binary
sequences. In [7, 4, 5], generalized Lambalgen’s theorem is studied for computable
correlated probabilities. We study generalization of Lambalgen’s theorem without
assuming computability of conditional probabilities using the notion of Hippocratic
(blind) randomness [3, 2]. In [1], a counter-example for the generalization of Lam-
balgen’s theorem is shown when the conditional probability is not computable. We
show an example of conditional probability (Theorem ) that is not computable for
all random parameters but generalization of Lambalgen’s theorem still holds for all
random parameters.

In [4], the section of random set on product space is defined as random sequences
with respect to conditional probability. In this talk I would like to talk about the
validity of the definition from the Bayesian statistical point of view.

Let S be the set of finite binary strings and ∆(s) ∶= {sx∞∣x∞ ∈ Ω} for s ∈ S,
where sx∞ is the concatenation of s and x∞. Let X = Y = Ω and P be a computable
probability on X×Y . PX and PY are marginal distribution on X and Y , respectively.
In the following we write P (x, y) ∶= P (∆(x) × ∆(y)) and P (x∣y) ∶= P (∆(x)∣∆(y))
for x, y ∈ S.

Let RP be the set of ML-random points and RPy∞ ∶= {x∞ ∣ (x∞, y∞) ∈ RP }. In
[4], it is shown that conditional probabilities exist for all random parameters, i.e.,

∀x ∈ S, y∞ ∈RPY P (x∣y∞) ∶= lim
y→y∞ P (x∣y) (the right-hand-side exist)

and P (⋅∣y∞) is a probability on (Ω,B) for each y∞ ∈RPY .
Let HP (⋅∣y∞),y∞ be the set of Hippocratic random sequences w.r.t. P (⋅∣y∞) with

oracle y∞.

Theorem ([4, 5]). Let P be a computable probability on X × Y . Then

RPy∞ ⊇HP (⋅∣y∞),y∞ for all y∞ ∈RPY . (1)

The equality holds if the conditional probability is computable with oracle y∞.

The next theorem shows an example that equality does not hold in (1).

Theorem (Bauwens [1]). There is a computable probability P on X×Y and y∞ ∈RPY

such that
(a) P (⋅∣y∞) is not computable and (b) RPy∞ ≠HP (⋅∣y∞),y∞.

The following is an example that equality holds in (1) even if the conditional
probability is not computable for all random parameters.

Theorem. There is a computable probability P on X×Y such that for all y∞ ∈RPY ,
(a) P (⋅∣y∞) is not computable and (b) RPy∞ =HP (⋅∣y∞),y∞.
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Dan Turetsky

The complexity of free abelian groups

Abstract: Vector spaces are defined by a set of first-order axioms; the theorem
“every vector space has a basis” is second-order, but is a consequence of these axioms.
In contrast, free abelian groups are typically defined by having a basis. It is then
natural to wonder if free abelian groups could also be defined by some set of first-
order axioms. A negative answer might take the form of a theorem that the index
set of computable free abelian groups is not arithmetic. Unfortunately, this theorem
is false, at least in standard computability theory. It can be rescued, however, by
moving to uncountable computability theory.
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Linda Westrick

Seas of squares with sizes from a co-enumerable set

Abstract: Three prominent classes of two-dimensional subshifts are the shifts of
finite type (SFTs), the sofic shifts, and the effectively closed shifts. SFTs are obtained
by forbidding finitely many local patterns. A shift is sofic if it is a factor of a SFT,
meaning that it is the image of a SFT under a continuous shift-invariant map. And
a shift is effectively closed if it is obtained by forbidding a c.e. set of local patterns.

In general, every SFT is sofic and every sofic shift is effectively closed, but the
reverse implications do not hold. We would like to know what conditions on a c.e. set
of forbidden patterns would guarantee that the resulting shift is not just effectively
closed, but sofic. The primary purpose of this work is to expand our inventory of
examples and techniques related to this question.

For each co-enumerable S ⊆ N, consider a two-dimensional subshift XS on the
alphabet {black,white} whose elements consist of black squares of various sizes on a
white background, where the side length of each square is in S. We show that each
XS is sofic.

The entropy of a sofic shift is always less than or equal to the entropy of the SFT
of which is is a factor. In two and more dimensions, it is an open question whether
every sofic shift is the factor of a SFT of the same entropy. Our seas of squares do
not provide a counterexample: we show that each XS is a factor of a SFT of the
same entropy.

To prove our results, we build upon the self-similar Turing machine tiling con-
struction of Durand, Romashchenko and Shen (2010). They showed that the follow-
ing class of effectively closed shifts are sofic (this result was also obtained indepen-
dently by Aubrun and Sablik). For each one-dimensional effectively closed subshift
W , consider a two-dimensional shiftXW whose elements consist of vertical stripes ar-
ranged so that the common row is an element of W . In other words, XW is obtained
by “stretching” W into two dimensions.

In their construction, arrays of Turing machines operating a multiple scales work
together to “read” the common row, compute the forbidden words of W , and kill
any elements whose common row contains a forbidden word. The “reading” process
makes strong use of the fact that each bit of the common row is repeated infinitely
often along an entire column, so the machines have many opportunities to work
together to access it.

In our construction, a similar array of Turing machines “measures” the sizes of
the squares in a potential element of XS , computes the forbidden sizes, and kills the
element if it sees a square of a forbidden size. However, an extra challenge is that
each machine must measure and store the size of every single square in its vicinity,
since sizes are not necessarily repeated and thus no machine can compensate for
another machine overlooking a square. A high density of information must also be
communicated between the machines, creating additional challenges.

29



General Information

VENUE The conference is held in the Physical Science Build-
ing on the Mānoa campus. All lectures are in the auditorium PSB
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lai Vereshchagin (Moscow, Russia).

LOCAL ORGANIZATION AND SPONSORS The au-
ditorium fees and coffee service are sponsored by the Mathematics
Department at University of Hawai‘i at Mānoa. Financial support
is given by the National Science Foundation (NSF) under Grant
No. 1545707 and by the Simons Foundation under a Collaboration
Grant for Mathematicians (#315188 to Bjørn Kjos-Hanssen) . The
local organizing committee consists of Bjørn Kjos-Hanssen (chair
and PI), Mushfeq Khan (co-PI), Achilles Beros, Dale Myers, David
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