A Minimal Degree Computable from a Weakly 2-Generic

Rod Downey
Victoria University
Wellington
New Zealand

Oahu, January 2016
This work was carried out at the Whitiroa Mathematics Institute.
Partially supported by Marsden Fund, via grants to Downey and Nies.
Joint with Satyedev Nandakumar
Basic computability

- Not everyone here is a computability theorist, or even a recursion theorist.
- The arithmetic hierarchy is a collection of sets (languages) defined by number quantifiers.
- Let R be a computable (binary) relation.
- X is Σ_1^0 if $x \in X$ iff $\exists s R(x, s)$.
- Think halting problem.
- Y is Π_1^1 if Y is Σ_1^0.
- X is Σ_{n+1}^0 if X is "$\Sigma_1^0"$ but we replace R by a Π_n^0 relation. Equivalently we have $n + 1$ alternating quantifiers beginning with a \exists.
- For example $\{ x \mid \varphi_x \text{ has finite domain } \}$ is Σ_2^0.
- X is Δ_n^0 iff $X \in \Sigma_n^0 \cap \Pi_n^0$.
- (Post, 1944) $X \leq_T \emptyset^{(n)}$ iff $X \in \Delta_{n+1}^0$.
- Theme Definability and computation correlate.
The Basic Concepts

- \(m \neq 0 \) is called minimal if \(b \prec m \) implies \(b = 0 \).
- Minimal degrees were first constructed by Spector, and this construction was clarified by Sacks and Shoenfield as forcing with perfect trees.
- All constructions of minimal degrees use some kind of variation on the theme.
- (Actually a theorem of Jockusch and Posner) A set \(G \) is called \(n \)-generic if \(G \) meets or avoids all \(\Sigma^0_n \) sets of strings \(S \). That is, either there is a \(\sigma \in S \) with \(\sigma \prec G \), or there is a \(\rho \prec G \) such that for all \(\tau \in S \), \(\rho \not\leq \tau \).
- This is the same as Cohen genericity for \(n \) quantifier arithmetic. Forcing where the conditions are finite strings.
- \(G \) is weakly \(n \)-generic if \(G \) meets all \(\Sigma^0_n \) dense sets of strings.
- Weakly \(n + 1 \)-generic implies \(n \)-generic properly.
- Fundamental concepts in computability and logic.
How do these two fundamental concepts relate?

It is not difficult to show that as sets \(n \)-genericity and minimality are incompatible. What about degrees?

Early result of Jockusch (1980): If \(g \) is 2-generic and \(0 < b \leq g \) then \(b \) computes a 2-generic.

In particular, no 2-generic degree can bound a minimal degree.

All hyperimmune degrees are weakly 1-generic. Thus a minimal degree can be weakly 1-generic.

Question[1980] Can a minimal degree be computable from a 1-generic?
Towards a negative solution

- There was a lot of evidence towards a negative solution:

Theorem (Chong and Jockusch-1983)

If $0 < b < g < 0'$ and g is 1-generic, then b bounds a 1-generic degree.

Theorem (Haught-1986+Thesis)

If $0 < b < g < 0'$ and g is 1-generic, then b is 1-generic.
A positive solution

Theorem (Kumabe-1990, Chong and Downey-1990)

There exists a minimal degree $m < 0'$ and a 1-generic degree $m < g < 0''$.
A Characterization

- The Chong-Downey paper together with Chong-Downey 1989, provides a characterization of when a set is computable from a 1-generic degree.

Definition

- We say that a set of strings S is a proper cover of a set X iff for all $\sigma \prec X$, there exists $\tau \in S$, such that $\sigma \preceq \tau$, and no $\sigma \in S$ is an initial segment of X.
- We say that X has a tight cover S if S is a proper cover and for all proper covers \hat{S}, $\exists \sigma \in S \exists \tau \in \hat{S} (\sigma \preceq \tau)$.

Theorem (Chong and Downey-1990,1989)

- A set X is computable from a 1-generic set iff X has no tight cover.
- Moreover, there exists a procedure Φ such that for all sets X, if X has no tight cover, then there is a 1-generic $G \leq_T X''$ such that $\Phi^G = X$.
Some consequences

Theorem (Downey and Yu-2009)
There is a hyperimmune-free minimal degree computable from a 1-generic degree.

Theorem (Chong and Downey, 1989)
There is a minimal degree below $0'$ not computable from a 1-generic degree.

Theorem (Kurtz-thesis)
Almost no degree is computable from a 1-generic.

Clearly this was first obtained by direct methods.
The following result was an implicit question, and first formally articulated by Barmpalias, Day and Lewis-Pye.

Theorem

There is a minimal degree computable from a weakly 2-generic degree.

This result is tight because of Jockusch’s result on 2-generics. The following theorem is probably evident to anyone who ever thought about it, but points at difficulties in proving the theorem.

Theorem

Suppose that $X \leq_T G, \emptyset'$ and G is weakly 2-generic. Then X is computable.
Proof of the minimal pair theorem

- Suppose that \(\Phi^G = X \) with \(X \leq_T \emptyset' \), \(X = \lim_s X_s \), and \(G \) weakly 2-generic.

- Let
 \[S = \{ \sigma \mid [\exists s_0 \forall s > s_0 (\Phi^\sigma \downarrow [s] \not\preceq X_s)] \lor (\forall \tau \forall s)(\sigma \preceq \tau \rightarrow \Phi^\tau \uparrow [s])\} \].

- If \(S \) is dense then \(G \) meets \(S \) which is a contradiction. Thus \(S \) is not dense.

- Therefore there is some \(\sigma_0 \) such that for all \(\sigma \in S \), \(\sigma_0 \not\preceq \sigma \).

- Then for all \(\sigma \) extending \(\sigma_0 \) there is some \(\tau \), \(\sigma \preceq \tau \) and \(\Phi^\tau \downarrow \). But also for such a \(\tau \), \(\Phi^\tau \not\prec X \), so that \(X \) is computable.
Notice that the above says that both the weakly 2-generic G and minimal M with $\Gamma^G = M$ must be not Δ^0_2.

The construction is a full approximation of these in $\Delta^0_3 - \Delta^0_2$.

S_i denotes the i-th Σ^0_2 set of strings.

$$R_e : \text{Either } S_e \text{ not dense, or } G \text{ meets } S_e.$$

$$\mathcal{N}_e : \Phi^M_e \text{ total } \Rightarrow (\Phi^M_e \equiv_T \emptyset) \lor (M \leq_T \Phi^M_e)$$

Γ is thought of as a partial computable map from strings to strings, inducing the funtional $\Gamma^G = M$.

Look for $\tau \in \mathbb{R}$

σ° for "Si not dense above σ^*"
Michael McInerney has worked on “multiply generic” G. Here think of S_i as the range of a partial computable function. Replace this with e.g. ω-c.a.

Characterizes when X is computable from a multiply generic. Extends Haught’s Theorem. Relationships with integer valued randomness.

Question Is there a characterization of when X is computable from a weakly 2-generic?

(Guess) X has no Σ^0_2 “tight proper dense cover”.

The problem is that the CD proof (even when corrected in McInerney’s Thesis) is already a full approximation $0''$ argument so you would guess that any extension would add another quantifier, as the things that need approximating are very complex. But maybe not...
Thank You