Being low for K along sequences and elsewhere

Wolfgang Merkle

Heidelberg University Heidelberg, Germany Liang Yu

Nanjing University Nanjing, China

Lowness for ${\rm K}$

The term word refers to finite binary sequences.

The term sequence refers to infinite binary sequences, which, as usual, can be viewed as a set of words or as a real.

Let ${\rm K}$ denote prefix-free Kolmogorov complexity and recall the following standard lowness notions with respect to ${\rm K}.$

Definition Lowness and weak lowness for K

A sequence X is LOW FOR **K** in case access to X as an oracle does not improve the prefix-free complexity of any word by more than an additive constant c, i.e., we have for all words w

$$K(w) - K^X(w) \le c.$$
 (*)

A sequence X is WEAKLY LOW FOR **K** in case (*) holds for some constant c and an infinite set of words w

In the sequel, we consider similar notions where condition (*) is required only for all words w in a certain set, e.g., the set of all initial segments of some fixed sequence.

Definition Lowness for K on a set and along a sequence

A sequence X is LOW FOR **K** ON A SET D (OF WORDS) in case access to X as an oracle does not improve the prefix-free Kolmogorov complexity of any word in D by more than an additive constant c, i.e.,

for all words w in D, we have $K(w) - K^X(w) \le c$.

A sequence X is LOW FOR **K** ALONG A SEQUENCE A in case X is low for K on the set of initial segments of A.

A sequence X is LOW FOR K ALONG A SEQUENCE A ON A SET I (OF NATURAL NUMBERS) in case X is low for K on the set of initial segments of A with length in I.

Definition Weak lowness for K on a set and along a sequence

A sequence X is WEAKLY LOW FOR **K** ON A SET D in case X is low for K on some infinite subset of D.

A sequence X is WEAKLY LOW FOR **K** ALONG A SEQUENCE A in case X is weakly low for K on the set of initial segments of A. (i.e., in case X is low for K on some infinite set of initial segments of A).

A sequence X is WEAKLY LOW FOR K ALONG A SEQUENCE A ON A SET I in case X is weakly low for K on the set of initial segments of A with length in I.

Lowness for Ω and for ML-randomness

In case X is low for K along A, this can be described as follows:

access to oracle X does not allow to compress the initial segments of A significantly better than without X. (**)

Assertion (**) also yields descriptions of the situations where

oracle X is LOW FOR Ω

 (i.e., Ω remains Martin-Löf random with respect to X),
 oracle X is LOW FOR MARTIN-LÖF RANDOMNESS.

In both cases, apply the Levin-Schnorr characterization of Martin-Löf randomness in terms of incompressibility and adjust accordingly what it means to compress significantly better.

In the first case it then suffices to let A be equal to Ω .

In the second case, we have to consider a whole set of sequences A, i.e., all Martin-Löf random ones in place of a single one.

By the discussion above, the notions of being low for Ω and being low for Martin-Löf randomness both resemble being low for K along a sequence.

Now the two former notions yield well-known characterizations of lowness and weak lowness for $\rm K.$

Theorem	(Joe Miller)
A sequence	X is weakly low for K if and only if X is low for Ω .
Theorem	(André Nies)
A sequence X is low for K if and only if X is low for Martin-Löf randomness.	

It is suggesting to ask whether results of this type can be obtained for the notion of being low for ${\rm K}$ along a sequence.

Theorem

For any sequence X, the following assertions are equivalent.

- (a) X is low for K.
- (b) X is low for K along all sequences on all infinite computable sets.
- (c) X is low for K along some sequence on some infinite computable set.

Sketch of proof. The implications (a) \rightarrow (b) and (b) \rightarrow (c) are immediate, so it remains to show the implication (c) \rightarrow (a).

We give the proof for the case $I = \mathbb{N}$. Since *I* is computable, this does not change much.

Proof of the lemma

Sketch of proof (cont.). By contraposition, it suffices to prove

If X is not low for K, then for all A, X is not low for K along A.

By the coding theorem, up to some constant factor c we have

$$\sum_{w|=n} 2^{-K(w)} = 2^{-K(n)}.$$

Letting $d_n = \mathrm{K}(n) - \mathrm{K}^{X}(n) - c$, the d_n are unbounded. We have $\sum_{|w|=n} 2^{-(\mathrm{K}(w)-d_n)} \leq 2^{d_n} c 2^{-\mathrm{K}(n)} = c 2^{-c} 2^{-\mathrm{K}^{X}(n)} \leq 2^{-\mathrm{K}^{X}(n)}.$

Up to effectivity issues, it were thus possible to obtain for all *n* and all words *w* of length *n* prefix-free codes of length $\frac{K(w) - d_n}{w}$.

The values of the d_n can only be effectively approximated in the limit, hence via an X-computable request set we only achieve code lengths $K(w) - d_n/k$ for some constant k, which suffices.

Weak lowness and weak lowness along sequences

Theorem

For any sequence X, the following assertions are equivalent.

- (a) X is weakly low for K.
- (b) X is weakly low for K along almost some sequence.
- (c) X is weakly low for K along almost all sequences.

Sketch of proof: The implications $(c) \rightarrow (b)$ and $(b) \rightarrow (a)$ are immediate, so it remains to show $(a) \rightarrow (c)$. For all *n* and sequences *Y* let

$$\Omega_n^Y = \sum_{|w|=n} 2^{-\mathrm{K}^Y(w)}$$
 and $\Omega_n = \Omega_n^{\emptyset}$.

Assuming that X is weakly low for K, there are $n_1 < n_2 < ...$ such that up to an additive constant we have $K(n_i) = K^X(n_i)$. By the coding theorem, up to constant factors it then holds that

$$\Omega_{n_i}=2^{\mathrm{K}(n_i)}=2^{\mathrm{K}^{X}(n_i)}=\Omega_{n_i}^{X}.$$

Weak lowness and weak lowness along sequences

Sketch of proof (cont.): So for some constant c_0 and all *i* we have

$$\Omega_{n_i}^X \leq c_0 \Omega_{n_i}$$
 (where $\Omega_{n_i}^X = \sum_{|w|=n_i} 2^{-\mathrm{K}^X(w)}$).

There is a constant c_1 such that for all n and any set D that contains at least half of the strings of length n, we have

$$\Omega_n \leq c_1 \sum_{w \in D} 2^{-\mathrm{K}(w)}.$$

Let $d = c_0 c_2$. Then for all *i*, less than half of all words of length n_i are contained in the set

$$D_i = \{w \colon |w| = n_i \text{ and } \mathrm{K}^{\mathsf{X}}(w) \leq \mathrm{K}(w) - d\}.$$

Otherwise, we obtain the contradiction

$$\Omega_{n_i}^X \le c_0 c_1 \sum_{w \in D_i} 2^{-K(w)} = c_0 c_1 2^{-d} \sum_{w \in D_i} 2^{-(K(w)-d)} < \Omega_{n_i}^X.$$

Weak lowness and weak lowness along sequences

Sketch of proof (cont.): We have seen that there is a constant d and $n_1 < n_2 < \ldots$ such that for all i we have

 $K^{X}(w) \leq K(w) - d$ for less than half of all words w of length $n_{i}(*)$

We want to show that X is weakly low along almost all sequences.

Assume otherwise. Then by the Kolmogorov 0-1-law the class

$$\{A: X \text{ is not weakly low along } A\} = \bigcap_{t} \bigcup_{j} \underbrace{\{A: K^{X}(A \upharpoonright n) \leq K(A \upharpoonright n) - t \text{ for all } n \geq j\}}_{:=V(t,j)},$$

has measure 1, hence the union of all V(d,j) has measure 1.

So there is some j_0 such that the union of $V(d, 0), \ldots, V(d, j_0)$ has measure at least 2/3, which contradicts (*) for $n_i > j_0$.

Theorem

Let D be an infinite set of strings. Almost all sequences X are weakly low for K on D but are not low for K on D.